Skip to main content
Log in

A compact finite difference method for a class of time fractional convection-diffusion-wave equations with variable coefficients

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper is concerned with numerical methods for a class of time fractional convection-diffusion-wave equations. The convection coefficient in the equation may be spatially variable and the time fractional derivative is in the Caputo sense with the order α (1 < α < 2). The class of the equations includes time fractional convection-diffusion-wave/diffusion-wave equations with or without damping as its special cases. In order to overcome the difficulty caused by variable coefficient problems, we first transform the original equation into a special and equivalent form, which is then discretized by a fourth-order compact finite difference method for the spatial derivative and by the L 1 approximation coupled with the Crank-Nicolson technique for the time derivative. The local truncation error and the solvability of the method are discussed in detail. A rigorous theoretical analysis of the stability and convergence is carried out using a discrete energy analysis method. The optimal error estimates in the discrete H 1, L 2 and L norms are obtained under the mild condition that the time step is smaller than a positive constant, which depends solely upon physical parameters involved (this condition is no longer required for the special case of constant coefficients). Applications using three model problems give numerical results that demonstrate the effectiveness and the accuracy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal, O.P.: Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dynam. 29, 145–155 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT. doi:10.1007/s10543-014-0484-2

  3. Bueno-Orovio, A., Kay, D., Grau, V., Rodriguez, B., Burrage, K.: Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization. J. R. Soc. Interface. 11, 20140352–20140352 (2014)

    Article  Google Scholar 

  4. Burrage, K., Hale, N., Kay, D.: An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations. SIAM, J. Sci. Comput. 34, A2145–A2172 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, C., Liu, F., Burrage, K.: Finite difference methods and a Fourier analysis for the fractional reaction-diffusion equation. Appl. Math. Comput. 198, 754–769 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, C., Liu, F., Turner, I., Anh, V.: Numerical schemes with high spatial accuracy for a variable order anomalous subdiffusion equation. SIAM J. Sci. Comput. 32, 1740–1760 (2010)

  7. Chen, C., Liu, F., Turner, I., Anh, V.: Numerical simulation for the variable-order Galilei invariant advection diffusion equation with a nonlinear source term. Appl. Math. Comput. 217, 5729–5742 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, J., Liu, F., Anh, V., Shen, S., Liu, Q., Liao, C.: The analytical solution and numerical solution of the fractional diffusion-wave equation with damping. Appl. Math. Comput. 219, 1737–1748 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen, S., Liu, F.: ADI-Euler and extrapolation methods for the two-dimensional fractional advection-dispersion equation. J. Appl. Math. Comput. 26, 295–311 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, S., Liu, F., Zhuang, P., Anh, V.: Finite difference approximations for the fractional Fokker-Planck equation. Appl. Math. Model 33, 256–273 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cui, M.: A high-order compact exponential scheme for the fractional convection-diffusion equation. J. Comput. Appl. Math. 255, 404–416 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  12. Du, R., Cao, W.R., Sun, Z.Z.: A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 34, 2998–3007 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fujita, Y.: Integrodifferential equation which interpolates the heat equation and the wave equation. I. Osaka J. Math. 27, 309–321 (1990)

    MATH  Google Scholar 

  14. Fujita, Y.: Integrodifferential equation which interpolates the heat equation and the wave equation. II. Osaka J. Math. 27, 797–804 (1990)

    MATH  Google Scholar 

  15. Gorenflo, R., Mainardi, F., Moretti, D., Paradisi, P.: Time fractional diffusion: a discrete random walk approach. Nonlinear Dynam. 29, 129–143 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gu, Y., Zhuang, P., Liu, F.: An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation. Comput. Model. Eng. Sci 56, 303–334 (2010)

    MATH  MathSciNet  Google Scholar 

  17. Herrmann, R.: Fractional Calculus: An Introduction for Physicists. World Scientific, Singapore (2011)

    Book  Google Scholar 

  18. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  19. Hu, X., Zhang, L.: On finite difference methods for fourth-order fractional diffusion-wave and subdiffusion systems. Appl. Math. Comput. 218, 5019–5034 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Huang, J., Tang, Y., Vázquez, L., Yang, J.: Two finite difference schemes for time fractional diffusion-wave equation. Numer. Algor. doi:10.1007/s11075-012-9689-0

  21. Klages, R., Radons, G., Sokolov, I.M.: Anomalous Transport: Foundations and Applications. Wiley-VCH, Weinheim (2008)

    Book  Google Scholar 

  22. Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Li, C.P., Zhao, Z.G., Chen, Y.Q.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108–2131 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Liu, F., Yang, C., Burrage, K.: Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math 231, 160–176 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 191, 12–20 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection-dispersion models. Comput. Math. Appl. 64, 2990–3007 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Liu, Q., Liu, F., Turner, I., Anh, V., Gu, Y.T.: A RBF meshless approach for modeling a fractal mobile/immobile transport model. Appl. Math. Comput. 226, 336–347 (2014)

    Article  MathSciNet  Google Scholar 

  29. Luchko, Yu., Punzi, A.: Modeling anomalous heat transport in geothermal reservoirs via fractional diffusion equations. Int. J. Geomath. 1(2), 257–276 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  31. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A Math. Gen. 37, R161–R208 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted Numerical Methods for Singular Perturbation Problems. World Scientific, Singapore (1996)

    Book  MATH  Google Scholar 

  34. Mohebbi, A., Abbaszadeh, M.: Compact finite difference scheme for the solution of time fractional advection-dispersion equation. Numer. Algor. 63, 431–452 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  35. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  36. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  37. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer-Verlag, New York (1997)

    Google Scholar 

  38. Saadatmandi, A., Dehghan, M., Azizi, M.R.: The Sinc-Legendre collocation method for a class of fractional convection-diffusion equations with variable coefficients. Commun. Nonlinear Sci. Numer. Simulat. 17, 4125–4136 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  39. Samarskii, A.A.: The Theory of Difference Schemes. Marcel Dekker Inc., New York (2001)

    Book  MATH  Google Scholar 

  40. Schneider, W.R., Wyss, W.: Fractional diffusion and wave equations. J. Math. Phys. 30, 134–144 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  41. Shen, S., Liu, F., Anh, V.: Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation. Numer. Algor. 56, 383–404 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  42. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  43. Uchaikin, V.V.: Method of Fractional Derivatives. Artishok, Ul’janovsk (2008)

    Google Scholar 

  44. Uddin, M., Hag, S.: RBFs approximation method for time fractional partial differential equations. Commun. Nonlinear Sci. Numer. Simulat. 16, 4208–4214 (2011)

    Article  MATH  Google Scholar 

  45. Varga, R.S.: Matrix Iterative Analysis. Springer-Verlag, Berlin (2000)

    Book  MATH  Google Scholar 

  46. Vong, S.W., Pang, H.K., Jin, X.Q.: A high-order difference scheme for the generalized Cattaneo equation. East Asian J. Appl. Math. 2, 170–184 (2012)

    MATH  MathSciNet  Google Scholar 

  47. Wyss, W.: Fractional diffusion equation. J. Math. Phys 27, 2782–2785 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  48. Yuste, S.B., Acedo, L.: An explicit finite difference method and a new Von-Neumann type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  49. Zhang, H., Liu, F., Phanikumar, M.S., Meerschaert, M.M.: A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model. Comput. Math. Appl. 66, 693–701 (2013)

    Article  MathSciNet  Google Scholar 

  50. Zhang, Y., Benson, D.A., Reeves, D.M.: Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications. Adv. Water Resour. 32, 561–581 (2009)

    Article  Google Scholar 

  51. Zhang, Y.N., Sun, Z.Z., Wu, H.W.: Error estimates of Crank-Nicolson-type difference schemes for the subdiffusion equation. SIAM J. Numer. Anal. 49, 2302–2322 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  52. Zhuang, P., Liu, F., Anh, V., Turner, I.: New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 46, 1079–1095 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  53. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Ming Wang.

Additional information

This work was supported in part by E-Institutes of Shanghai Municipal Education Commission No. E03004 and Shanghai Leading Academic Discipline Project No. B407.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YM. A compact finite difference method for a class of time fractional convection-diffusion-wave equations with variable coefficients. Numer Algor 70, 625–651 (2015). https://doi.org/10.1007/s11075-015-9965-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-9965-x

Keywords

Mathematics Subject Classifications (2010)

Navigation