Skip to main content
Log in

Quadrature algorithms for high dimensional singular integrands on simplices

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Galerkin discretizations of integral operators in \(\mathbb {R}^{d}\) require an accurate numerical evaluation of integrals \(I={\int }_{\!\!S^{(1)}}{\int }_{\!\!S^{(2)}}f(x,y)dydx\) where S (1), S (2) are d-simplices and the integrand function f has a possibly nonintegrable singularity at x = y. In a previous paper (2011) we constructed several families of quadrature rules \({Q}_{\mathcal {N}}\) for a class of functions f which allow algebraic singularities at x = y, including hypersingular kernels, and are Gevrey smooth for xy. This holds for kernel functions commonly occurring in integral equations. In this paper we address the implementation aspects for computing \(Q_{\mathcal {N}}\) and give a detailed computation algorithm for arbitrary space dimension d and arbitrary mutual location of simplices S (1) and S (2). The algorithm consists of a “desingularizing” coordinate transformation, which reduces the singular support of the integrand to one variable while preserving Gevrey regularity in all 2d−1 remaining variables and simultaneously simplifies the integration domain to a unit cube. Due to the simple singularity structure after transformation, one can optionally use various combinations of quadrature rules in singular and regular directions. We report on comprehensive convergence studies for the full tensor product and Smolyak-type quadrature rules in the 2d−1 Gevrey-regular variables combined with either composite Gauss-Legendre or Gauss-Jacobi quadrature rules in the singular direction. A Matlab software implementing the algorithm complements this paper and is available from Netlib.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boutet de Monvel, L., Krée, P.: Pseudo-differential operators and Gevrey classes. Ann. Inst. Fourier (Grenoble) 17(fasc. 1), 295–323 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chernov, A., von Petersdorff, T., Schwab, C.: Exponential convergence of hp quadrature for integral operators with Gevrey kernels. M2AN Math. Model. Numer. Anal. 45(3), 387–422 (2011)

    Article  MATH  Google Scholar 

  3. Chernov, A., von Petersdorff, T., Schwab, C.: Netlib package na39, available at http://www.netlib.org/numeralgo

  4. Chernov, A., Reinarz, A.: Numerical quadrature for high-dimensional singular integrals over parallelotopes. Comput. Math. Appl. 66(7), 1213–1231 (2013)

    Article  MathSciNet  Google Scholar 

  5. Chernov, A., Schwab, C.: Exponential convergence of Gauss-Jacobi quadratures for high dimensional singular integrands on simplices. SIAM J. Numer. Anal. 50(3), 1433–1455 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Costabel, M., Dauge, M., Nicaise, S.: Corner Singularities and Analytic Regularity for Linear Elliptic Systems. Part I: Smooth domains. HAL Archives http://hal.archives-ouvertes.fr/docs/00/45/41/17/PDF/CoDaNi_Analytic_Part_I.pdf (2010)

  7. Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numer. Algorithms 18(3-4), 209–232 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Heiss, F., Winschel, V.: http://sparse-grids.de/

  9. Heiss, F., Winschel, V.: Likelihood approximation by numerical integration on sparse grids. J. Econometrics 144(1), 62–80 (2008)

    Article  MathSciNet  Google Scholar 

  10. Hsiao, G.C., Wendland, W.L.: Strongly elliptic boundary integral equations, Springer Applied Mathematical Sciences Vol. 164. Springer Verlag (2008)

  11. Krylov, V.I.: Approximate calculation of integrals, Translated by Arthur H. Stroud. The Macmillan Co., New York (1962)

    Google Scholar 

  12. Nédélec, J.-C.: Integral equations with nonintegrable kernels. Integr. Equ. Oper. Theory 5(4), 562–572 (1982)

    Article  MATH  Google Scholar 

  13. Petras, K.: Smolyak cubature of given polynomial degree with few nodes for increasing dimension. Numer. Math. 93(4), 729–753 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sauter, S., Schwab, C.: Boundary Element Methods. Springer Ser. Comput. Math. 39 (2010)

  15. Schwab, C.: Variable order composite quadrature of singular and nearly singular integrals. Computing 53(2), 173–194 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schwab, C.: p- and hp-finite element methods. The Clarendon Press Oxford University Press, New York (1998)

    MATH  Google Scholar 

  17. Schwab, C., Wendland, W.L.: Numerical Quadrature of Singular Surface Integrals in Boundary Element Methods. Numer. Math. 62, 343–369 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Stroud, A.H, Secrest, D.: Gaussian quadrature formulas, Prentice-Hall Inc., Englewood Cliffs. N.J (1966)

  19. Trefethen, L.N.: Is Gauss quadrature better than Clenshaw-Curtis? SIAM Rev. 50(1), 67–87 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Chernov.

Additional information

A. Chernov acknowledges support by the HCM, University of Bonn and the University of Reading; C. Schwab was supported by ERC Advanced Grant AdG 247277.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernov, A., von Petersdorff, T. & Schwab, C. Quadrature algorithms for high dimensional singular integrands on simplices. Numer Algor 70, 847–874 (2015). https://doi.org/10.1007/s11075-015-9977-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-9977-6

Keywords

Mathematics Subject Classification (2010)

Navigation