Skip to main content
Log in

Iterative methods for nonlinear systems associated with finite difference approach in stochastic differential equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We present some iterative methods of different convergence orders for solving systems of nonlinear equations. Their computational complexities are studies. Then, we introduce the method of finite difference for solving stochastic differential equations of Itô-type. Subsequently, our multi-step iterative schemes are employed in this procedure. Several experiments are finally taken into account to show that the presented approach and methods work well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atalla, M.A.: Finite-difference approximations for stochastic differential equations, Probabilistic methods for the investigation of systems with an infinite number of degrees of freedom. Inst. Math. Acad. Science USSR, Kiev, 11–16 (1986)

  2. Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: A modified Newton-Jarratt’s composition. Numer. Algor. 55, 87–99 (2010)

    Article  MATH  Google Scholar 

  3. Fornberg, B.: Calculation of weights in finite difference formulas. SIAM Rev. 40, 685–691 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fornberg, B.: Finite difference method. Scholarpedia 6(10), 9685 (2011)

    Article  Google Scholar 

  5. Grau-Sánchez, M., Grau, À., Noguera, M.: On the computational efficiency index and some iterative methods for solving systems of nonlinear equations. J. Comput. Appl. Math. 236, 1259–1266 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Grau-Sánchez, M., Noguera, M., Amat, S.: On the approximation of derivatives using divided difference operators preserving the local convergence order of iterative methods. J. Comput. Appl. Math. 237, 363–372 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Homeier, H.H.H.: On Newton-type methods with cubic convergence. J. Comput. Appl. Math. 176, 425–432 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Iacus, S.M.: Simulation and Inference for Stochastic Differential Equations with R Examples. Springer, New York, USA (2008)

    Book  MATH  Google Scholar 

  9. Kloeden, P.E., Platen, E., Schurz, H.: Numerical Solution of SDE through Computer Experiments. Springer-Verlag, Germany (2003)

    Google Scholar 

  10. Lamperti, J.: Semi-stable stochastic processes. Trans. Amer. Math. Soc. 104, 62–78 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  11. Montazeri, H., Soleymani, F., Shateyi, S., Motsa, S.S.: On a new method for computing the numerical solution of systems of nonlinear equations. J. Appl. Math. 2012, 15. Article ID 751975

  12. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  13. Platen, E., Bruti-Liberati, N.: Numerical Solution of Stochastic Differential Equations with Jumps in Finance. Springer-Verlag, Berlin, Heidelberg (2010)

    Book  MATH  Google Scholar 

  14. Sharma, J.R., Guha, R.K., Sharma, R.: An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numer. Algor. 62, 307–323 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice Hall, New York (1964)

    MATH  Google Scholar 

  16. Ullah, M.Z., Soleymani, F., Al-Fhaid, A.S.: Numerical solution of nonlinear systems by a general class of iterative methods with application to nonlinear PDEs. Numer. Algor. 67, 223–242 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wolfram Mathematica, Tutorial Collection : Advanced Numerical Differential Equation Solving in Mathematica. ISBN: 978-1-57955-058-5 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazlollah Soleymani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soheili, A.R., Soleymani, F. Iterative methods for nonlinear systems associated with finite difference approach in stochastic differential equations. Numer Algor 71, 89–102 (2016). https://doi.org/10.1007/s11075-015-9986-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-9986-5

Keywords

Mathematics Subject Classification (2010)

Navigation