Abstract
When solving a sequence of related linear systems by iterative methods, it is common to reuse the preconditioner for several systems, and then to recompute the preconditioner when the matrix has changed significantly. Rather than recomputing the preconditioner from scratch, it is potentially more efficient to update the previous preconditioner. Unfortunately, it is not always known how to update a preconditioner, for example, when the preconditioner is an incomplete factorization. A recently proposed iterative algorithm for computing incomplete factorizations, however, is able to exploit an initial guess, unlike existing algorithms for incomplete factorizations. By treating a previous factorization as an initial guess to this algorithm, an incomplete factorization may thus be updated. We use a sequence of problems from model order reduction. Experimental results using an optimized GPU implementation show that updating a previous factorization can be inexpensive and effective, making solving sequences of linear systems a potential niche problem for the iterative incomplete factorization algorithm.
Similar content being viewed by others
References
Ahmad, M.I., Szyld, D.B., van Gijzen, M.B.: Preconditioned multishift biCG for H2-optimal model reduction. Research Report 12-06-15. Department of Mathematics, Temple University (2012)
Alvarado, F.L., Schreiber, R.: Optimal parallel solution of sparse triangular systems. SIAM J. Sci. Comput. 14, 446–460 (1993)
Antoulas, A.C.: Approximation of large-scale dynamical systems. SIAM publications, philadelphia (2005)
Anzt, H.: Asynchronous and multiprecision linear solvers - scalable and fault-tolerant numerics for energy efficient high performance computing. Ph.D. thesis, Karlsruhe Institute of Technology Institute for Applied and Numerical Mathematics (2012)
Anzt, H., Chow, E., Dongarra, J.: Iterative sparse triangular solves for preconditioning. In: Träff, J.L., Hunold, S., Versaci, F. (eds.) Euro-Par 2015: parallel processing, lecture notes in computer science, vol. 9233, pp 650–661. Springer, Berlin (2015), 10.1007/978-3-662-48096-0_50
Badía, J.M., Benner, P., Mayo, R., Quintana-Ortí, E.S.: Parallel algorithms for balanced truncation model reduction of sparse systems. In: Dongarra, J.J., Madsen, K., Wasniewski, J. (eds.) Applied parallel computing: 7th international conference, PARA 2004. no. 3732 in Lecture Notes in Comput. Sci., pp 267–275. Springer, Berlin (2006)
Badía, J.M., Benner, P., Mayo, R., Quintana-Ortí, E.S., Quintana-Ortí, G., Remón, A.: Balanced truncation model reduction of large and sparse generalized linear systems. Technical report Chemnitz Scientific Computing Preprints 06-04. Fakultät für Mathematik, TU Chemnitz (2006)
Badía, J.M., Benner, P., Mayo, R., Quintana-Ortí, E.S., Quintana-Ortí, G., Saak, J.: Parallel order reduction via balanced truncation for optimal cooling of steel profiles. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005 parallel processing, Lecture Notes in Comput. Sci., vol. 3648, pp 857–866. Springer, Berlin (2005), 10.1007/11549468∖_93
Baumann, M., van Gijzen, M.B.: Nested Krylov methods for shifted linear systems. Report 14-01, Delft Institute of Applied Mathematics, Delft University of Technology (2014)
Beattie, C.A., Gugercin, S., Wyatt, S.: Inexact solves in interpolatory model reduction. Linear Algebra Appl. 436(8), 2916–2943 (2012). doi:10.1016/j.laa.2011.07.015
Bellavia, S., De Simone, V., di Serafino, D., Morini, B.: Efficient preconditioner updates for shifted linear systems. SIAM J. Sci. Comput. 33(4), 1785–1809 (2011). doi:10.1137/100803419
Benner, P., Ezzatti, P., Kressner, D., Quintana-Ortí, E.S., Remón, A.: Accelerating model reduction of large linear systems with graphics processors. In: Jónasson, K. (ed.) Applied Parallel and Scientific Computing, Lecture Notes in Comput. Sci., vol. 7134, pp 88–97. Springer, Berlin (2012), 10.1007/978-3-642-28145-7∖_9
Benner, P., Ezzatti, P., Quintana-Ortí, E.S., Remón, A.: Using hybrid CPU-GPU platforms to accelerate the computation of the matrix sign function. In: Lin, H.X., Alexander, M., Forsell, M., Knüpfer, A., Prodan, R., Sousa, L., Streit, A. (eds.) Euro-Par 2009 – parallel processing workshops, lecture notes in Comput. Sci., vol. 6043, pp 132–139. Springer, Berlin (2010), 10.1007/978-3-642-14122-5_17
Benner, P., Li, J.R., Penzl, T.: Numerical solution of large Lyapunov equations, Riccati equations, and linear-quadratic control problems. Numer. Lin. Alg. Appl. 15(9), 755–777 (2008)
Benner, P., Saak, J.: A semi-discretized heat transfer model for optimal cooling of steel profiles. In: Benner, P., Mehrmann, V., Sorensen, D. (eds.) Dimension reduction of large-scale systems, lect. Notes Comput. Sci. Eng., vol. 45, pp 353–356. Springer, Berlin (2005)
Benzi, M., Joubert, W., Mateescu, G.: Numerical experiments with parallel orderings for ILU preconditioners. Electron. Trans. Numer. Anal. 8, 88–114 (1999)
Bergman, K., et al.: Exascale computing study: technology challenges in achieving exascale systems. DARPA IPTO ExaScale Computing Study (2008)
Bertaccini, D.: Efficient preconditioning for sequences of parametric complex symmetric linear systems. Electron. Trans. Numer. Anal. 18, 49–64 (2004)
Calgaro, C., Chehab, J.P., Saad, Y.: Incremental incomplete LU factorizations with applications. Numerical Linear Algebra with Applications 17(5), 811–837 (2010). doi:10.1002/nla.756
Chow, E., Anzt, H., Dongarra, J.: Asynchronous iterative algorithm for computing incomplete factorizations on GPUs. In: Lecture Notes in Comput. Sci., vol. 9137, pp 1–16 (2015)
Chow, E., Patel, A.: Fine-grained parallel incomplete LU factorization. SIAM J. Sci. Comput. 37, C169–C193 (2015)
Doi, S.: On parallelism and convergence of incomplete LU factorizations. Appl. Numer. Math. 7(5), 417–436 (1991). doi:10.1016/0168-9274(91)90011-N
Druskin, V., Knizhnerman, L., Simoncini, V.: Analysis of the rational Krylov subspace and ADI methods for solving the Lyapunov equation. SIAM J. Numer. Anal. 49, 1875–1898 (2011)
Duff, I.S., Meurant, G.A.: The effect of ordering on preconditioned conjugate gradients. BIT 29(4), 635–657 (1989)
Duintjer Tebbens, J., Tüma, M.: Efficient preconditioning of sequences of nonsymmetric linear systems. SIAM J. Sci. Comput. 29(5), 1918–1941 (2007)
Frommer, A., Szyld, D.B.: On asynchronous iterations. J. Comput. Appl. Math. 123, 201–216 (2000)
Gugercin, S., Antoulas, A.C., Beattie, C.: \(\mathcal {H}_2\) model reduction for large-scale dynamical systems. SIAM J. Matrix Anal. Appl. 30 (2), 609–638 (2008)
Innovative Computing Lab: Software distribution of MAGMA version 1.6. http://icl.cs.utk.edu/magma/ (2014)
Köhler, M., Saak, J.: Efficiency improving implementation techniques for large scale matrix equation solvers. Chemnitz scientific computing prep. CSC 09-10 TU chemnitz (2009)
Köhler, M., Saak, J.: A shared memory parallel implementation of the IRKA algorithm for \(\mathcal {H}_{2}\) model order reduction. In: Manninen, P., Öster, P. (eds.) Applied Parallel and Scientific Computing, Lecture Notes in Comput. Sci., vol. 7782, pp 541–544. Springer, Berlin (2013), 10.1007/978-3-642-36803-5_42
Laub, A.J., Heath, M.T., Paige, C.C., Ward, R.C.: Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms. IEEE Trans. Automat. Control 32(2), 115–122 (1987)
Logg, A., Mardal, K.A., Wells, G.N., et al.: Automated solution of differential equations by the finite element method. Springer (2012)
Lukarski, D.: Parallel sparse linear algebra for multi-core and many-core platforms - parallel solvers and preconditioners. Ph.D. thesis, Karlsruhe Institute of Technology (KIT), Germany (2012)
Naumov, M.: Parallel solution of sparse triangular linear systems in the preconditioned iterative methods on the GPU. Tech. Rep. NVR-2011-001 NVIDIA (2011)
Corporation, N V I D I A: NVIDIA CUDA Compute Unified Device Architecture Programming Guide 2.3.1 Edn (2009)
NVIDIA Corporation: NVIDIA CUDA TOOLKIT V6.5 (2014)
NVIDIA Corporation: CUBLAS library user guide Du-06702-001_v6.5 edn (2014)
NVIDIA Corporation: CUSPARSE LIBRARY (2014)
Poole, E.L., Ortega, J.M.: Multicolor ICCG methods for vector computers. SIAM J. Numer. Anal. 24, 1394–1417 (1987)
Pothen, A., Alvarado, F.: A fast reordering algorithm for parallel sparse triangular solution. SIAM J. Sci. Stat. Comput. 13(2), 645–653 (1992). doi:10.1137/0913036
Saad, Y.: Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematics, Philadelphia (2003)
Tombs, M.S., Postlethwaite, I.: Truncated balanced realization of a stable nonminimal state-space system. Int. J. Control 46(4), 1319–1330 (1987)
Wachspress, E.L.: The ADI model problem. Springer, New York (2013)
Wolf, M., Heroux, M., Boman, E.: Factors impacting performance of multithreaded sparse triangular solve. In: Palma, J., Daydé, M., Marques, O., Lopes, J. (eds.) High Performance Computing for Computational Science – VECPAR 2010, Lecture Notes in Comput. Sci., vol. 6449, pp 32–44. Springer, Berlin (2011), 10.1007/978-3-642-19328-6_6
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Anzt, H., Chow, E., Saak, J. et al. Updating incomplete factorization preconditioners for model order reduction. Numer Algor 73, 611–630 (2016). https://doi.org/10.1007/s11075-016-0110-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-016-0110-2