Skip to main content
Log in

On using cubic spline for the solution of problems in calculus of variations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Two different approaches based on cubic B-spline are developed to approximate the solution of problems in calculus of variations. Both direct and indirect methods will be described. It is known that, when using cubic spline for interpolating a function gC 4[a,b] on a uniform partition with the step size h, the optimal order of convergence derived is O(h 4). In Zarebnia and Birjandi (J. Appl. Math. 1–10, 2012) a non-optimal O(h 2) method based on cubic B-spline has been used to solve the problems in calculus of variations. In this paper at first we will obtain an optimal O(h 4) indirect method using cubic B-spline to approximate the solution. The convergence analysis will be discussed in details. Also a locally superconvergent O(h 6) indirect approximation will be describe. Finally the direct method based on cubic spline will be developed. Some test problems are given to demonstrate the efficiency and applicability of the numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zarebnia, M., Birjandi, M.: The numerical solution of problems in calculus of variation using B-spline collocation method. J. Appl. Math. 2012, 1–10 (2012)

  2. Balakrishnan, A.V., Neustadt, L.W.: Computing Methods in Optimization Problems. Academic Press, New York (1964)

    MATH  Google Scholar 

  3. Bellman, R.: Dynamic Programming. Princeton University Press, NJ (1957)

    MATH  Google Scholar 

  4. Bryson, A.E., Ho, Y.C.: Applied Optimal Control. Blaisdell Waltham (1969)

  5. Vlassenbroeck, J., Van Dooren, R.: A new look at the Brachistochrone problem. J. Appl. Math. Phys.(ZAMP) 31, 785–790 (1977)

    MathSciNet  MATH  Google Scholar 

  6. Lakestani, M., Kazemian, M.: Solving Brachistochrone problem using homotopy analysis method. Acta Universitatis Apulensis (33), 165–175 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Abbasbandy, S., Shirzadi, A.: The series solution of problems in the calculus of variations via the homotopy analysis method. Zeitschrift fur Naturforschung a 64, 30–36 (2009)

    Google Scholar 

  8. Ghomanjani, F., Ghaderi, S.: Variational iterative method applied to variational problems with moving boundaries. Appl. Math. 3, 395–402 (2012)

    Article  MathSciNet  Google Scholar 

  9. Saadatmandi snd, A., Dehghan, M.: The numerical solution of problems in calculus of variation using Chebyshev finite difference method. Phys. Lett. A 327, 4037–4040 (2008)

    Article  MATH  Google Scholar 

  10. Zarebnia, M., Sarvari, Z.: Non-polynomial spline method for the solution of problems in calculus of variations. J. Hyperstruct. 1(3), 40–52 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Zarebnia, M., Aliniya, N.: Double exponential transformation in the Sinc-Galerkin method for the solution of problems in calculus of variations. Commun. Numer. Anal. 2014, 1–13 (2014)

  12. Jalilian, R., Rashidinia, J., Farajian, K., Jalilian, H.: Non-polynomial spline for the numerical solution of problems in calculus of variations. Int. J. Math. Model. Comput. 5(1), 1–11 (2015)

    Google Scholar 

  13. Ritz, W.: Ueber eine neue methode zur lsung gewisser variationsprobleme der mathematischen physik. J. Reine Angew. Math. 135, 1–61 (1908)

    MathSciNet  Google Scholar 

  14. Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis. Noordhoff (1908)

  15. Kraft, D.: On converting optimal control problems into nonlinear programming problems. Comput. Math. Prog., Springer, Berlin F15, 261–280 (1985)

  16. Stryk, O., Bulirsch, R.: Direct and indirect methods for trajectory optimization. Ann. Oper. Res. 37, 357–373 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Goh, C.J., Teo, K.L.: Control parameterization: A unified approach to optimal control problems with general constraints. Automatica 24, 3–18 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Vlassenbroeck, J., Van Dooren, R.: A Chebyshev technique for solving nonlinear optimal control problems. IEEE Trans. Automat. Control 33, 333–340 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Maleki, M., Mashali-Firouzi, M.: A numerical solution of problems in calculus of variation using direct method and nonclassical parameterization. J. Comput. Appl. Math. 234, 1364–1373 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dacorogna, B.: Introduction to the Calculus of Variations. Imperial College Press, Singapore (2004)

    Book  MATH  Google Scholar 

  21. Prenter, P.M.: Spline and Variational Methods. Wiley, New York (1975)

    MATH  Google Scholar 

  22. Lucas, T.R.: Error bounds for interpolating ciubic splines under various end conditions. Siam J. Numer. Anal. 11(3), 569–584 (1975)

    Article  MATH  Google Scholar 

  23. Daniel, J.W., Swartz, B.K.: Extrapolated collocation for two-point boundary-value problems using cubic splines. J. Inst. Maths Applies 16, 161–174 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  24. Irodotou-ellina, M., Houstis, E.N.: An o(h 6) quintic spline collocation method for fourth order two-point boundary value problems. BIT 28, 288–301 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Khan, A., Sultana, T.: Non-polynomial quintic spline solution for the system of third order boundary-value problems. Numer. Algor. 59, 541–559 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rashidinia, J., Ghasemi, M., Jalilian, R.: An o(h 6) numerical solution of general nonlinear fifth-order two point boundary value problems. Numer. Algor. 55(4), 403–428 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hall, C.A.: On error bounds for spline interpolation. Noordhoff 1, 209–218 (1968)

    MathSciNet  MATH  Google Scholar 

  28. Christara, C.C., Ng, K.S.: Optimal quadratic and cubic spline collocation on nonuniform partitions. Computing 76, 227–257 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zarebnia, M., Hoshyar, M., Sedaghati, M.: Non-polynomial spline method for the solution of problems in calculus of variations. World Acad. Sci. Eng. Technol. 51, 986–991 (2011)

    Google Scholar 

  30. Allen, B.T.: An investigation into direct numerical methods for solving some calculus of variations problems. part 1-second order methods. J. Frankl. Inst. 9(2), 205–210 (1966)

    MATH  Google Scholar 

  31. Chen, C.F., Hsiao, C.H.: A Walsh series direct method for solving variational problems. J. Frankl. Inst. 300, 265–280 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schechter, R.S.: The Variational Method in Engineering. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ghasemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, M. On using cubic spline for the solution of problems in calculus of variations. Numer Algor 73, 685–710 (2016). https://doi.org/10.1007/s11075-016-0113-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0113-z

Keywords

Navigation