Skip to main content
Log in

Generalized sinc-Gaussian sampling involving derivatives

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The generalized sampling expansion which uses samples from a bandlimited function f and its first r derivatives was first introduced by Linden and Abramson (Inform. Contr. 3, 26–31, 1960) and it was extended in different situations by some authors through the last fifty years. The use of the generalized sampling series in approximation theory is limited because of the slow convergence. In this paper, we derive a modification of a generalized sampling involving derivatives, which is studied by Shin (Commun. Korean Math. Soc. 17, 731–740, 2002), using a Gaussian multiplier. This modification is introduced for wider classes, the class of entire functions including unbounded functions on ℝ and the class of analytic functions in a strip. It highly improves the convergence rate of the generalized sampling which will be of exponential order. We will show that many known results included in Sampl. Theory Signal Image Process. 9, 199–221 (2007) and Numer. Funct. Anal. Optim. 36, 419–437 (2015) are special cases of our results. Numerical examples show a rightly good agreement with our theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Annaby, M.H., Asharabi, R.M.: Computing eigenvalues of boundary-value problems using sinc-Gaussian method. Sampl. Theory Signal Image Process 7(3), 293–311 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Annaby, M.H., Asharabi, R.M.: Approximating eigenvalues of discontinuous problems by sampling theorems. J. Numer. Math. 3, 163–183 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Annaby, M.H., Asharabi, R.M.: Error analysis associated with uniform Hermite interpolations of bandlimited functions. J. Korean Math. Soc. 47, 1299–1316 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Annaby, M.H., Asharabi, R.M.: Computing eigenvalues of Sturm-Liouville problems by Hermite interpolations. Numer. Algor. 60, 355–367 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Asharabi, R.M., Prestin, J.: A modification of Hermite sampling with a Gaussian multiplier. Numer. Funct. Anal. Optim. 36, 419–437 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Butzer, P.L., Nessel, R.J.: Fourier analysis and approximation. Academic, New York (1971)

    Book  MATH  Google Scholar 

  7. Butzer, P.L., Schmeisser, G., Stens, R.L.: An introduction to sampling analysis. In: Marvasti, F. (ed.) Non uniform sampling: theory and practices, pp 17–121. Kluwer, New York (2001)

  8. Grozev, G.R., Rahman, Q.I.: Reconstruction of entire functions from irregularly spaced sample points. Canad. J. Math. 48, 777–793 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Higgins, J.R.: Sampling theory in fourier and signal analysis foundations. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  10. Hinsen, G.: Irregular sampling of bandlimited L p-functions. J. Approx. Theory 72, 346–364 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jagerman, D., Fogel, L.: Some general aspects of the sampling theorem. Trans. IRE It-2, 139–146 (1956)

    Google Scholar 

  12. Kress, R.: On the general Hermite cardinal interpolation. Math. Comput. 26, 925–933 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  13. Linden, D.A., Abramson, N.M.: A generalization of the sampling theorem. Inform. Contr. 3, 26–31 (1960). (see also vol. 4, pp. 95-96. 1961 for correction of eq. (1))

    Article  MathSciNet  MATH  Google Scholar 

  14. Papoulis77, A.: Generalized sampling expansion. IEEE Trans. Circuits Syst. Cas-24, 652–654 (1977)

  15. Qian, L.: On the regularized Whittaker-Kotel’nikov-Shannon sampling formula. Proc. Amer. Math. Soc. 131, 1169–1176 (2002)

    Article  MATH  Google Scholar 

  16. Qian, L., Creamer, D.B.: A Modification of the sampling Series with a Gaussian multiplie. Sampl. Theory Signal Image Process. 5, 1–20 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Qian, L., Creamer, D.B.: Localized sampling in the presence of noise. Appl. Math. Lett. 19, 351–355 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rawn, M.D.: A stable nonuniform sampling expansion involving derivatives. IEEE Trans. Inform. Theory 35, 1223–1227 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shin, C.-E.: Generalized Hermite interpolation and sampling theorem involving derivatives. Commun. Korean Math. Soc. 17, 731–740 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schmeisser, G.: Numerical differentiation inspired by a formula of R.P.Boas. J. Approx. Theory 160, 202–222 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schmeisser, G., Stenger, F.: Sinc approximation with a Gaussian multiplier. Sampl. Theory Signal Image Process. 6, 199–221 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Tanaka, K., Sugihara, M., Murota, K.: Complex analytic approach to the sinc-Gauss sampling formula. Japan J. Ind. Appl. Math. 25, 209–231 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Asharabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asharabi, R.M. Generalized sinc-Gaussian sampling involving derivatives. Numer Algor 73, 1055–1072 (2016). https://doi.org/10.1007/s11075-016-0129-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0129-4

Keywords

Mathematics Subject Classificaton (2010)

Navigation