Skip to main content
Log in

Generalizing the ENO-DB2p transform using the inverse wavelet transform

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The essentially non-oscillatory (ENO)-wavelet transform developed by Chan and Zhou (SIAM J. Numer. Anal. 40(4), 1369–1404, 2002) is based on a combination of the Daubechies-2p wavelet transform and the ENO technique. It uses extrapolation methods to compute the scaling coefficients without differencing function values across jumps and obtains a multiresolution framework (essentially) free of edge artifacts. In this work, we present a different way to compute the ENO-DB2p wavelet transform of Chan and Zhou which allows us to simplify the process and easily generalize it to other families of orthonormal wavelets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amat, S., Aràndiga, F., Cohen, A., Donat, R., Garcia, G., von Oehsen, M.: Data compression with ENO schemes: a case study. Appl. Comput. Harmon. Anal. 11, 273–288 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amat, S., Aràndiga, F., Cohen, A., Donat, R.: Tensor product multiresolution analysis with error control for compact image representations. J. Signal Process. 82(4), 587–608 (2002)

    Article  MATH  Google Scholar 

  3. Aràndiga, F., Donat, R.: Nonlinear multiscale decompositions: the approach of A. Harten. Numerical Algorithms 23, 175–216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chan, T.F., Zou, H.M.: ENO-Wavelet transforms for piecewise smooth functions. SIAM J. Numer. Anal. 40(4), 1369–1404 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chang, S., Vetterli, M., Yu, B.: Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process. 9(9), 1532–1546 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Claypoole, P., Davis, G., Sweldens, W., Baraniuk, R.: Nonlinear wavelet transforms for image coding. Proceedings of the 31st Asilomar Conference on Signals, Systems, and Computers 1, 662–667 (1997)

    Google Scholar 

  7. Aràndiga, F., Cohen, A., Donat, R., Dyn, N., Matei, B.: Approximation of piecewise smooth functions and images by edge-adapted (ENO-EA) nonlinear multiresolution techniques. Appl. Comput. Harmon. Anal. 24(2), 225–250 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 41, 909–996 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Daubechies, I.: Ten Lectures on Wavelets. In: CBMS-NSF Regional Conf. Ser. in Appl. Math. 61. SIAM, Philadelphia (1992)

  10. Donoho, D.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Donoho, D., Johnstone, I.: Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc. 90, 1200–1224 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Donoho, D.: De-noising by soft thresholding. IEEE Trans. Inform. Theory 41, 613–627 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Donoho, D.: Wedgelets: Nearly-minimax Estimation of Edges, Technical report, Departament of Statistics. Stanford University, Stanford (1997)

    Google Scholar 

  14. Donoho, D.: Orthonormal Ridgelets and Linear Singularities. Technical report, Department of Statistics. Stanford University, Stanford (1998)

    Google Scholar 

  15. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput. Phys. 71, 231–303 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Harten, A.: ENO schemes with subcell resolution. J. Comput. Phys. 83, 148–184 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Harten, A.: Discrete multiresolution analysis generalized wavelets. J. Appl. Numer. Math. 12, 153–192 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Harten, A.: Multiresolution representation of data II: general framework. SIAM J. Numer. Anal. 33(3), 1205–1256 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mallat, S.: Multiresolution approximation and wavelet orthonormal bases of L 2(R). Trans. Amer. Math. Soc. 315, 69–87 (1989)

    MathSciNet  MATH  Google Scholar 

  20. Mallat, S.: A theory of multiresolution signal decomposition: the wavelet representation. IEEE Trans. PAMI 11, 674–693 (1989)

    Article  MATH  Google Scholar 

  21. Mallat, S.: A wavelet tour of signal processing. Academic Press, San Diego (1998)

    MATH  Google Scholar 

  22. Noguera, J.J.: Transformaciones Multiescala No Lineales. Tesis Doctoral, Departamento de Matemtica Aplicada. Universitat de Valncia, http://roderic.uv.es/handle/10550/29285 (2013)

  23. Osher, S., Shu, C.-W.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Strang, G., Nguyen, T.: Wavelets and filter banks. Wellesley-Cambridge Press, wellesley (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesc Aràndiga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aràndiga, F., Donat, R. & Noguera, J.J. Generalizing the ENO-DB2p transform using the inverse wavelet transform. Numer Algor 74, 175–198 (2017). https://doi.org/10.1007/s11075-016-0144-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0144-5

Keywords

Navigation