Skip to main content
Log in

Numerov type variable mesh approximations for 1D unsteady quasi-linear biharmonic problem: application to Kuramoto-Sivashinsky equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We present two new two-level compact implicit variable mesh numerical methods of order two in time and two in space, and of order two in time and three in space for the solution of 1D unsteady quasi-linear biharmonic problem subject to suitable initial and boundary conditions. The simplicity of the proposed methods lies in their three-point discretization without requiring any fictitious points for incorporating the boundary conditions. The derived methods are shown to be unconditionally stable for a model linear problem for uniform mesh. We also discuss how our formulation is able to handle linear singular problem and ensure that the developed numerical methods retain their orders and accuracy everywhere in the solution region. The proposed difference methods successfully works for the highly nonlinear Kuramoto-Sivashinsky equation. Many physical problems are solved to demonstrate the accuracy and efficiency of the proposed methods. The numerical results reveal that the obtained solutions not only approximate the exact solutions very well but are also much better than those available in earlier research studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson, D.G., Weinberger, H.F.: Multidimensional nonlinear diffusion arising in population genetics. Adv. in Math 30, 33–67 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  2. Conte, R.: Exact Solutions of Nonlinear Partial Differential Equations by Singularity Analysis, Lecture Notes in Physics, pp 1–83. Springer, Berlin (2003)

    MATH  Google Scholar 

  3. Danumjaya, P., Pani, A.K.: Orthogonal cubic spline collocation method for the extended Fisher-Kolmogorov equation. J. Comput. Appl. Math 174, 101–117 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dee, G. T., Van Saarloos, W.: Bistable systems with propagating fronts leading to pattern formation. Phys. Rev. Lett. 60, 2641–2644 (1988)

    Article  Google Scholar 

  5. Doss, L.J.T., Nandini, A.P.: An H 1-Galerkin mixed finite element method for the extended Fisher-Kolmogorov equation. Int. J. Numer. Anal. Model. Ser. B 3, 460–485 (2012)

    MATH  Google Scholar 

  6. Fan, E.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ganaiea, I.A., Arora, S., Kukreja, V.K.: Cubic Hermite collocation solution of Kuramoto-Sivashinsky equation. Int. J. Comput. Math 93, 223–235 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Greig, I.S., Morris, J.L.: A Hopscotch method for the Kortewegde Vries equation. J. Comput. Phys. 20, 229–236 (1976)

    Article  MATH  Google Scholar 

  9. Hageman, L.A., Young, D.M.: Applied Iterative Methods. Dover Publication, New York (2004)

    MATH  Google Scholar 

  10. Hooper, A.P., Grimshaw, R.: Nonlinear instability at the interface between two viscous fluids. Phys. Fluids 28, 37–45 (1985)

    Article  MATH  Google Scholar 

  11. Kaya, D.: An application for the higher order modified KdV equation by decomposition method. Commun. Nonlinear Sci. Numer. Simul. 10, 693–702 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kelly, C.T.: Iterative Methods for Linear and Non-linear Equations. SIAM Publications, Philadelphia (1995)

    Book  Google Scholar 

  13. Khater, A.H., Temsah, R.S.: Numerical solutions of the generalized Kuramoto-Sivashinsky equation by Chebyshev spectral collocation methods. Comput. Math. Appl. 56, 1465–1472 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Khiari, N., Omrani, K.: Finite difference discretization of the extended Fisher-Kolmogorov equation in two dimension. Comput. Math. Appl. 62, 4151–4160 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39, 422–443 (1895)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kuramoto, Y., Tsuzuki, T.: Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog. Theor. Phys. 55, 356–369 (1976)

    Article  Google Scholar 

  17. Lai, H., Ma, C.: Lattice Boltzmann method for the generalized Kuramoto-Sivashinskyequation. Phys. A 388, 1405–1412 (2009)

    Article  MathSciNet  Google Scholar 

  18. Lakestani, M., Dehghan, M.: Numerical solutions of the generalized Kuramoto-Sivashinsky equation using B-spline functions. Appl. Math. Model 36, 605–617 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mitchell, A.R.: Computational Methods in Partial Differential Equations. Wiley, New York (1969)

    MATH  Google Scholar 

  20. Mittal, R.C., Arora, G.: Quintic B-spline collocation method for numerical solution of the KuramotoSivashinsky equation. Commun. Nonlinear Sci. Numer. Simul. 15, 2798–2808 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mohanty, R.K.: An accurate three spatial grid-point discretization of O(k 2 + h 4) for the numerical solution of one-space dimensional unsteady quasi-linear biharmonic problem of second kind. Appl. Math. Comput. 140, 1–14 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Mohanty, R.K., Kaur, D.: High accuracy implicit variable mesh methods for numerical study of special types of fourth order non-linear parabolic equations. Appl. Math. Comput. 273, 678–696 (2016)

    MathSciNet  Google Scholar 

  23. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM Publisher (2003)

  24. Saprykin, S., Demekhin, E.A., Kalliadasis, S.: Two-dimensional wave dynamics in thin films. I. Stationary solitary pulses. Phys. Fluids 17, 117105 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sivashinsky, G.I.: Instabilities, pattern-formation, and turbulence in flames. Annu. Rev. Fluid Mech. 15, 179–199 (1983)

    Article  MATH  Google Scholar 

  26. Taha, T.R., Ablowitz, M.J.: Analytical and numerical aspects of certain nonlinear evolution equations. III. Numerical, Kortewegde Vries equations. J. Comput. Phys. 55, 231–253 (1984)

    Article  MATH  Google Scholar 

  27. Tatsumi, T.: Irregularity, regularity and singularity of turbulence. Turbulence and chaotic phenomena in fluids. Iutam, 1–10 (1984)

  28. Uddin, M., Haq, S., Siraj-ul-Islam.: A mesh-free numerical method for solution of the family of Kuramoto-Sivashinsky equations. Appl. Math. Comput. 212, 458–469 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Vliegenthart, A.C.: On finite difference methods for the Korteweg-de Vries equation. J. Eng. Math 5, 137–155 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu, Y., Shu, C.W.: Local discontinuous Galerkin methods for the Kuramoto-Sivashinsky equations and the Ito-type coupled KdV equations. Comput. Methods Appl. Mech. Engrg. 195, 3430–3447 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhu, G.: Experiments on director waves in nematic liquid crystals. Phys. Rev. Lett. 49, 1332–1335 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Mohanty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, R.K., Kaur, D. Numerov type variable mesh approximations for 1D unsteady quasi-linear biharmonic problem: application to Kuramoto-Sivashinsky equation. Numer Algor 74, 427–459 (2017). https://doi.org/10.1007/s11075-016-0154-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0154-3

Keywords

Mathematics Subject Classifications (2010)