Abstract
In this work, a parameter uniform numerical method is developed to find the approximate solution of time-dependent singularly perturbed convection-diffusion-reaction problems with general shift arguments in the space variable. The earlier work on such type of initial-interval boundary value problems is restricted to the case of small delay and advance arguments while in practical situations the shift arguments can be of arbitrary size (i.e. it may be bigger or small enough in size). The fitted mesh technique to establish parameter uniform error estimates is not extendable for the class of singularly perturbed parabolic partial differential-difference equations (SPPPDDEs) with general shift arguments in the space variable. To observe the dispersive behaviour of the solution of the problem considered in this paper, we use systematically constructed suitable denominator function for the discrete second order derivative. The motivation behind the construction of the scheme is modelling rules for non-standard finite difference methods (NSFDMs), developed by Mickens. The proposed numerical scheme is analysed for consistency and stability. It is proved that the scheme is unconditionally stable and parameter uniform convergent. The scheme is convergent for bigger shift arguments as well as for small shift arguments. The performance of the method is corroborated by numerical examples.
Similar content being viewed by others
References
Ansari, A.R., Bakr, S., Shishkin, G.I.: A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations. J. Comput. Appl. Math. 205(1), 552–566 (2007)
Bansal, K., Rai, P., Sharma, K.K.: Numerical treatment for the class of time dependent singularly perturbed parabolic problems with general shift arguments. Differ. Equ. Dyn. Syst. 1–20 (2015)
Bashier, E., Patidar, K.C.: A second-order fitted operator finite difference method for a singularly perturbed delay parabolic partial differential equation. J. Differ. Equ. Appl. 17(5), 779–794 (2011)
Clavero, C., Gracia, J.L.: On the uniform convergence of a finite difference scheme for time dependent singularly perturbed reaction-diffusion problems. Appl. Math. Comput. 216(5), 1478–1488 (2010)
Clavero, C., Gracia, J.L., Jorge, J.C.: High-order numerical methods for one-dimensional parabolic singularly perturbed problems with regular layers. Numer. Methods Partial Differ. Equ. 21(1), 149–169 (2005)
Clavero, C., Jorge, J.C., Lisbona, F.: A uniformly convergent scheme on a nonuniform mesh for convection–diffusion parabolic problems. J. Comput. Appl. Math. 154(2), 415–429 (2003)
Cope, D.K., Tuckwell, H.C.: Firing rates of neurons with random excitation and inhibition. J. Theor. Biol. 80(1), 1–14 (1979)
Farrell, P.A., Hegarty, A.F.: On the determination of the order of uniform convergence. In: Proceedings of 13th IMACS World Congress on Computational and Applied Mathematics, pp 501–502 (1991)
Gowrisankar, S., Natesan, S.: A robust numerical scheme for singularly perturbed delay parabolic initial-boundary-value problems on equidistributed grids. Electron. Trans. Numer. Anal. 41, 376–395 (2014)
Jorge, J.C., Bujanda, B.: Numerical methods for evolutionary reaction–diffusion problems with nonlinear reaction terms. J. Comput. Appl. Math. 166(1), 167–180 (2004)
Kadalbajoo, M.K., Patidar, K.C., Sharma, K.K.: ε-uniformly convergent fitted methods for the numerical solution of the problems arising from singularly perturbed general DDEs. Appl. Math. Comput. 182(1), 119–139 (2006)
Kaushik, A.: Error estimates for a class of partial functional differential equation with small dissipation. Appl. Math. Comput. 226, 250–257 (2014)
Kaushik, A., Sharma, M.: A robust numerical approach for singularly perturbed time delayed parabolic partial differential equations. Comput. Math. Model. 23(1), 96–106 (2012)
Kumar, D., Kadalbajoo, M.K.: A parameter-uniform numerical method for time-dependent singularly perturbed differential-difference equations. Appl. Math. Model. 35(6), 2805–2819 (2011)
Kumar, M., Rao, S.C.S.: High order parameter-robust numerical method for time dependent singularly perturbed reaction–diffusion problems. Computing 90(1), 15–38 (2010)
Ladyz̆enskaja, O. A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasi-Linear Equations of Parabolic Type, vol. 23. American Mathematical Society, Providence (1988)
Lánskỳ, P.: On approximations of Stein’s neuronal model. J. Theor. Biol. 107(4), 631–647 (1984)
Lánskỳ, P., Musila, M.: Variable initial depolarization in Stein’s neuronal model with synaptic reversal potentials. Biol. Cybern. 64(4), 285–291 (1991)
Lánskỳ, P., Smith, C.E.: The effect of a random initial value in neural first-passage-time models. Math. Biosci. 93(2), 191–215 (1989)
Linss, T., Madden, N.: Analysis of an alternating direction method applied to singularly perturbed reaction-diffusion problems. Int. J. Numer. Anal. Model. 7(3), 507–519 (2010)
Mickens, R.E.: Nonstandard Finite Difference Models of Differential Equations. World Scientific (1994)
Munyakazi, J.B., Patidar, K.C.: A fitted numerical method for singularly perturbed parabolic reaction-diffusion problems. Comput. Appl. Math. 32(3), 509–519 (2013)
Murray, J.D.: Mathematical Biology. Biomathematics Series, vol. 19, 2nd edn. Springer, Berlin (1993)
Murray, J.D.: Mathematical Biology I: An Introduction, vol. 17. Springer, New York (2002)
Musila, M., Lánskỳ, P.: Generalized Stein’s model for anatomically complex neurons. BioSystems 25(3), 179–191 (1991)
Ng-Stynes, M.J., O’Riordan, E., Stynes, M.: Numerical methods for time-dependent convection-diffusion equations. J. Comput. Appl. Math. 21(3), 289–310 (1988)
Ramesh, V.P., Kadalbajoo, M.K.: Upwind and midpoint upwind difference methods for time-dependent differential-difference equations with layer behavior. Appl. Math. Comput. 202(2), 453–471 (2008)
Rathish Kumar, B.V., Kumar, S.: Convergence of three-step Taylor galerkin finite element scheme based monotone schwarz iterative method for singularly perturbed differential-difference equation. Numer. Funct. Anal. Optim. 36(8), 1029–1045 (2015)
Roos, H.G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems, vol. 24. Springer Science & Business Media (2008)
Smith, C.E., Smith, M.V.: Moments of voltage trajectories for Stein’s model with synaptic reversal potentials. J. Theor. Neurobiol. 3, 67–77 (1984)
Stein, R.B.: A theoretical analysis of neuronal variability. Biophys. J. 5(2), 173–194 (1965)
Stein, R.B.: Some models of neuronal variability. Biophys. J. 7(1), 37–68 (1967)
Tuckwell, H.: Firing rates of motoneurons with strong random synaptic excitation. Biol. Cybern. 24(3), 147–152 (1976)
Tuckwell, H.C., Richter, W.: Neuronal interspike time distributions and the estimation of neurophysiological and neuroanatomical parameters. J. Theor. Biol. 71 (2), 167–183 (1978)
Wilbur, W.J., Rinzel, J.: An analysis of Stein’s model for stochastic neuronal excitation. Biol. Cybern. 45(2), 107–114 (1982)
Wilbur, W.J., Rinzel, J.: A theoretical basis for large coefficient of variation and bimodality in neuronal interspike interval distributions. J. Theor. Biol. 105(2), 345–368 (1983)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bansal, K., Sharma, K.K. Parameter uniform numerical scheme for time dependent singularly perturbed convection-diffusion-reaction problems with general shift arguments. Numer Algor 75, 113–145 (2017). https://doi.org/10.1007/s11075-016-0199-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-016-0199-3
Keywords
- Singular perturbation
- Differential-difference equations
- Convection diffusion parabolic problem
- Fitted operator
- Non-standard finite difference method