Skip to main content
Log in

Unique discrete harmonic continuation and data completion problems using the fading regularization method

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A data completion method is proposed for solving Cauchy problems for which the number of data is less than the number of unknowns. This method is presented on the Cauchy problem for the Laplace equation in 2D situations. The idea is to search the solution in a space of discrete harmonic functions for which the existence and the uniqueness of a discrete harmonic continuation are guaranteed. Many numerical simulations using the finite element method highlight the efficiency, accuracy, and stability of this method even when data are noisy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrieux, S., Baranger, T.N., Ben Abda, A.: Solving Cauchy problems by minimizing an energy-like functional. Inverse Prob. 22, 115–133 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bourgeois, L.: A mixed formulation of quasi-reversibility to solve the Cauchy problem for the Laplace equation. Inverse Prob. 21, 1087–1104 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. CASTEM 2000: Code de calcul pour l’analyse de structures par la méthode des éléments finis. Guide d’utilisation. Commissariat l’Energie Atomique, DEN/DM2S/SEMT/LM2S, F-91191 Gif-sur-Yvette, France (1998)

  4. Chen, K.H., Kao, J.H., Chen, J.T., Wu, K.L.: Desingularized meshless method for solving Laplace equation with over-specified boundary conditions using regularization techniques. Comput. Mech. 43, 827–837 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cimetière, A., Delvare, F., Pons, F.: Une méthode inverse avec régularisation évanescente. Comptes Rendus de l’Académie des Sciences - Série IIb: Mécanique 328, 639–644 (2000)

    MATH  Google Scholar 

  6. Cimetière, A., Delvare, F., Jaoua, M., Pons, F.: Solution of the Cauchy problem using iterated Tikhonov regularisation. Inverse Prob. 17, 553–570 (2001)

    Article  MATH  Google Scholar 

  7. Cimetière, A., Delvare, F., Jaoua, M., Pons, F.: An inversion method for harmonic functions reconstruction. Int. J. Therm. Sci. 41, 509–516 (2002)

    Article  Google Scholar 

  8. Cimetière, A., Delvare, F., Pons, F.: Une méthode inverse d’ordre un pour les problèmes de complétion de données. C. R. Mec. 333, 123–126 (2005)

    Article  Google Scholar 

  9. Delvare, F., Cimetière, A., Pons, F.: An iterative boundary element method for Cauchy inverse problems. Comput. Mech. 28, 291–302 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Delvare, F., Cimetière, A.: A first order method for the Cauchy problem for the Laplace equation using BEM. Comput. Mech. 41, 789–796 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Delvare, F., Cimetière, A., Hanus, J.L., Bailly, P.: An iterative method for the Cauchy problem in linear elasticity with fading regularization effect. Comput. Methods Appl. Mech. Eng. 199, 3336–3344 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Delvare, F., Cimetière, A.: A robust data completion method for two dimensional Cauchy problems associated with the Laplace equation. European Journal of Computational Mechanics 20, 309–340 (2011)

    Google Scholar 

  13. Durand, B., Delvare, F., Bailly, P.: Numerical solution of Cauchy problems in linear elasticity in axisymmetric situations. Int. J. Solids Struct. 48, 3041–3053 (2011)

    Article  Google Scholar 

  14. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic Publishers, Boston (1996)

    Book  MATH  Google Scholar 

  15. Hadamard, J.: Lectures on Cauchy’s Problem in Linear Partial Differential Equations. Yale University Press, New Haven (1923)

    MATH  Google Scholar 

  16. Hansen, P.C.: Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34, 561–580 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hayashi, K., Ohura, Y., Onishi, K.: Direct method of solution for general boundary value problem of the Laplace equation. Engineering Analysis with Boundary Elements 26, 763–771 (2002)

    Article  MATH  Google Scholar 

  18. Hayashi, K., Onishi, K., Ohura, Y.: Direct numerical identification of boundary values in the Laplace equation. J. Comput. Appl. Math. 152, 161–174 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jourhmane, M., Lesnic, D., Mera, N.S.: Relaxation procedures for an iterative algorithm for solving the Cauchy problem for the Laplace equation. Eng. Anal. Bound. Elem. 28, 655–665 (2004)

    Article  MATH  Google Scholar 

  20. Klibanov, M.V., Santosa, F.: A computational quasi-reversibility method for Cauchy problems for Laplace’s equation. SIAM J. Appl. Math. 51, 1653–1675 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kozlov, V.A., Maz’ya, V.G., Fomin, A.V.: An iterative method for solving the Cauchy problem for elliptic equations. Comput. Math. Math. Phys. 31, 45–52 (1991)

    MathSciNet  MATH  Google Scholar 

  22. Jin, B., Zou, J.: A Bayesian inference approach to the ill-posed Cauchy problem of steady-state heat conduction. Int. J. Numer. Methods Eng. 76, 521–544 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lattès, R., Lions, J.L.: Méthode de quasi-réversibilité et applications. Dunod, Paris (1967)

    MATH  Google Scholar 

  24. Lesnic, D., Elliot, L., Ingham, D.B.: An iterative boundary element method for solving numerically the Cauchy problem for the Laplace equation. Eng. Anal. Bound. Elem. 20, 123–133 (1997)

    Article  Google Scholar 

  25. Marin, L.: Numerical solution of the Cauchy problem for steady-state heat transfer in two-dimensional functionally graded materials. Int. J. Solids Struct. 42, 4338–4351 (2005)

    Article  MATH  Google Scholar 

  26. Marin, L.: An iterative MFS algorithm for the Cauchy problem associated with the Laplace equation. Comput. Model. Eng. Sci. 48, 121–152 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Marin, L.: An alternating iterative M.F.S. Algorithm for the Cauchy problem in two-dimensional anisotropic heat conduction. Computers, Materials & Continua 12, 71–99 (2009)

  28. Marin, L.: Relaxation procedures for an iterative MFS algorithm for two-dimensional steady-state isotropic heat conduction Cauchy problems. Eng. Anal. Bound. Elem. 35, 415–429 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rischette, R., Baranger, T.N., Debit, N.: Numerical analysis of an energy-like minimization method to solve the Cauchy problem with noisy data. J. Comput. Appl. Math. 235, 3257–3269 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tikhonov, A.N., Arsenin, V.Y.: Solution of Ill-Posed Problems. Wiley, New York (1977)

    MATH  Google Scholar 

  31. Wahba, G.: Practical approximate solutions to linear operator equations when the data are noisy. SIAM J. Numer. Anal. 14, 651–667 (1977)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Delvare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delvare, F., Cimetière, A. Unique discrete harmonic continuation and data completion problems using the fading regularization method. Numer Algor 75, 731–751 (2017). https://doi.org/10.1007/s11075-016-0218-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0218-4

Keywords