Abstract
Two fully discrete methods are investigated for simulating the distributed-order sub-diffusion equation in Caputo’s form. The fractional Caputo derivative is approximated by the Caputo’s BDF1 (called L1 early) and BDF2 (or L1-2 when it was first introduced) approximations, which are constructed by piecewise linear and quadratic interpolating polynomials, respectively. It is shown that the first scheme, using the BDF1 formula, possesses the discrete minimum-maximum principle and nonnegativity preservation property such that it is stable and convergent in the maximum norm. The method using the BDF2 formula is shown to be stable and convergent in the discrete H 1 norm by using the discrete energy method. For problems of distributed order within a certain region, the method is also proven to preserve the discrete maximum principle and nonnegativity property. Extensive numerical experiments are provided to show the effectiveness of numerical schemes, and to examine the initial singularity of the solution. The applicability of our numerical algorithms to a problem with solution which lacks the smoothness near the initial time is examined by employing a class of power-type nonuniform meshes.
Similar content being viewed by others
References
Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)
Atanackovic, T.M.: A generalized model for the uniaxial isothermal deformation of a viscoelastic body. Acta Mech. 159, 77–86 (2002)
Atanackovic, T.M., Pilipovic, S., Zorica, D.: Time distributed-order diffusion-wave equation. I. Volterra-type equation. Pro. R. Soc. A: Math. Phys. Eng. Sci. 465, 1869–1891 (2009)
Atanackovic, T.M., Pilipovic, S., Zorica, D.: Time distributed-order diffusion-wave equation. II. Applications of Laplace and Fourier transformations. Pro. R. Soc. A: Math. Phys. Eng. Sci. 465, 1893–1917 (2009)
Bagley, R.L., Torvik, P.J.: On the existence of the order domain and the solution of distributed order equations (Parts I, II), Internat. J. Appl. Mech. 2, 865–882, 965–987 (2000)
Caputo, M.: Distributed order differential equations modelling dielectric induction and diffusion. Fract. Calc. Appl. Anal. 4, 421–442 (2001)
Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E 66, 046129/1–6 (2002)
Diethelm, K., Ford, N.J.: Numerical solution methods for distributed order differential equations. Fract. Calc. Appl. Anal. 4, 531–542 (2001)
Diethelm, K., Ford, N.J.: Numerical analysis for distributed-order differential equations. J. Comp. Appl. Math. 225(1), 96–104 (2009)
Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)
Gao, G.H., Sun, H.W., Sun, Z.Z.: Some high-order difference schemes for the distributed-order differential equations. J. Comput. Phys. 298, 337–359 (2015)
Jiao, Z., Chen, Y.Q. Podlubny, I.: Distributed-Order Dynamic Systems. Springer, Berlin (2012)
Jia, J., Peng, J., Li, K.: Well-posedness of abstract distributed-order fractional diffusion equations. Commun. Pure Appl. Anal. 13(2), 605–621 (2014)
Jin, B., Lazarov, R., Zhou, Z.: On two schemes for fractional diffusion and diffusion-wave equations, preprint, arXiv:1404.3800 (2014)
Jin, B., Lazarov, R., Sheen, D., Zhou, Z.: Error estimates for approximations of distributed order time fractional diffusion with nonsmooth data, preprint, arXiv:1504.01529v1 (2015)
Jin, B., Lazarov, R., Thomée, V., Zhou, Z.: On nonnegativity preservation in finite element methods for subdiffusion equations, preprint, arXiv:1510.02825 (2015)
Jin, B., Lazarov, R., Zhou, Z.: An analysis of the l1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36(1), 197–221 (2016)
Katsikadelis, J.T.: Numerical solution of distributed order fractional differential equations. J. Comput. Phys. 259, 11–22 (2014)
Kochubei, A.N.: Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340(1), 252–281 (2008)
Li, Z., Luchko, Y., Yamamoto, M.: Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations. Frac. Calc. Appl. Anal. 17(4), 1114–1136 (2014)
Liao, H.L., Sun, Z.Z.: Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations. Numer. Methods Partial Diff. Equa. 26, 37–60 (2010)
Liao, H.L., Zhang, Y.N.: Stability and convergence of modified Du Fort-Frankel schemes for solving time-fractional subdiffusion equations. J. Sci. Comput. 61(3), 629–648 (2014)
Lopez-Marcos, J.C.: A difference scheme for a nonlinear partial integro-differential equation. SIAM J. Numer. Anal. 27, 20–31 (1990)
Lorenzo, C.F., Hartley, T.T.: Variable-order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)
Luchko, Y.: Boundary value problems for the generalized time fractional diffusion equation of distributed order. Frac. Cal. Appl. Anal. 12(4), 409–422 (2009)
Luchko, Y.: Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 351(1), 218–223 (2009)
Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)
Meerschaert, M.M., Nane, E., Vellaisamy, P.: Distributed-order fractional diffusions on bounded domains. J. Math. Anal. Appl. 379(1), 216–228 (2011)
Morgado, M.L., Rebelo, M.: Numerical approximation of distributed order reaction diffusion equations. J. Comput. Appl. Math. 275, 216–227 (2015)
Morton, K.W., Mayers, D.F.: Numerical Solution of Partial Differential Equations, 2nd edn. Cambridge University Press, Cambridge (2005)
Mashayekhi, S., Razzaghi, M.: Numerical solution of distributed order fractional differential equations by hybrid functions. J. Comput. Phys. 315, 169–181 (2016)
McLean, W., Mustapha, K.: Time-stepping error bounds for fractional diffusion problems with nonsmooth initial data. J. Comput. Phys. 293, 201–217 (2015)
Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)
Ye, H., Liu, F., Anh, V., Turner, I.: Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains. IMA J. Appl. Math. 80, 825–838 (2015)
Zhang, Y.-N., Sun, Z.-Z., Liao, H.-L.: Finite difference methods for the time fractional diffusion equation on nonuniform meshes. J. Comput. Phys. 265, 195–210 (2014)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liao, Hl., Lyu, P., Vong, S. et al. Stability of fully discrete schemes with interpolation-type fractional formulas for distributed-order subdiffusion equations. Numer Algor 75, 845–878 (2017). https://doi.org/10.1007/s11075-016-0223-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-016-0223-7