Skip to main content
Log in

Stability of fully discrete schemes with interpolation-type fractional formulas for distributed-order subdiffusion equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Two fully discrete methods are investigated for simulating the distributed-order sub-diffusion equation in Caputo’s form. The fractional Caputo derivative is approximated by the Caputo’s BDF1 (called L1 early) and BDF2 (or L1-2 when it was first introduced) approximations, which are constructed by piecewise linear and quadratic interpolating polynomials, respectively. It is shown that the first scheme, using the BDF1 formula, possesses the discrete minimum-maximum principle and nonnegativity preservation property such that it is stable and convergent in the maximum norm. The method using the BDF2 formula is shown to be stable and convergent in the discrete H 1 norm by using the discrete energy method. For problems of distributed order within a certain region, the method is also proven to preserve the discrete maximum principle and nonnegativity property. Extensive numerical experiments are provided to show the effectiveness of numerical schemes, and to examine the initial singularity of the solution. The applicability of our numerical algorithms to a problem with solution which lacks the smoothness near the initial time is examined by employing a class of power-type nonuniform meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atanackovic, T.M.: A generalized model for the uniaxial isothermal deformation of a viscoelastic body. Acta Mech. 159, 77–86 (2002)

  3. Atanackovic, T.M., Pilipovic, S., Zorica, D.: Time distributed-order diffusion-wave equation. I. Volterra-type equation. Pro. R. Soc. A: Math. Phys. Eng. Sci. 465, 1869–1891 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Atanackovic, T.M., Pilipovic, S., Zorica, D.: Time distributed-order diffusion-wave equation. II. Applications of Laplace and Fourier transformations. Pro. R. Soc. A: Math. Phys. Eng. Sci. 465, 1893–1917 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bagley, R.L., Torvik, P.J.: On the existence of the order domain and the solution of distributed order equations (Parts I, II), Internat. J. Appl. Mech. 2, 865–882, 965–987 (2000)

    MATH  Google Scholar 

  6. Caputo, M.: Distributed order differential equations modelling dielectric induction and diffusion. Fract. Calc. Appl. Anal. 4, 421–442 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E 66, 046129/1–6 (2002)

    Article  Google Scholar 

  8. Diethelm, K., Ford, N.J.: Numerical solution methods for distributed order differential equations. Fract. Calc. Appl. Anal. 4, 531–542 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Diethelm, K., Ford, N.J.: Numerical analysis for distributed-order differential equations. J. Comp. Appl. Math. 225(1), 96–104 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao, G.H., Sun, H.W., Sun, Z.Z.: Some high-order difference schemes for the distributed-order differential equations. J. Comput. Phys. 298, 337–359 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jiao, Z., Chen, Y.Q. Podlubny, I.: Distributed-Order Dynamic Systems. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  13. Jia, J., Peng, J., Li, K.: Well-posedness of abstract distributed-order fractional diffusion equations. Commun. Pure Appl. Anal. 13(2), 605–621 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jin, B., Lazarov, R., Zhou, Z.: On two schemes for fractional diffusion and diffusion-wave equations, preprint, arXiv:1404.3800 (2014)

  15. Jin, B., Lazarov, R., Sheen, D., Zhou, Z.: Error estimates for approximations of distributed order time fractional diffusion with nonsmooth data, preprint, arXiv:1504.01529v1 (2015)

  16. Jin, B., Lazarov, R., Thomée, V., Zhou, Z.: On nonnegativity preservation in finite element methods for subdiffusion equations, preprint, arXiv:1510.02825 (2015)

  17. Jin, B., Lazarov, R., Zhou, Z.: An analysis of the l1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36(1), 197–221 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Katsikadelis, J.T.: Numerical solution of distributed order fractional differential equations. J. Comput. Phys. 259, 11–22 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kochubei, A.N.: Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340(1), 252–281 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, Z., Luchko, Y., Yamamoto, M.: Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations. Frac. Calc. Appl. Anal. 17(4), 1114–1136 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Liao, H.L., Sun, Z.Z.: Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations. Numer. Methods Partial Diff. Equa. 26, 37–60 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liao, H.L., Zhang, Y.N.: Stability and convergence of modified Du Fort-Frankel schemes for solving time-fractional subdiffusion equations. J. Sci. Comput. 61(3), 629–648 (2014)

  23. Lopez-Marcos, J.C.: A difference scheme for a nonlinear partial integro-differential equation. SIAM J. Numer. Anal. 27, 20–31 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lorenzo, C.F., Hartley, T.T.: Variable-order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Luchko, Y.: Boundary value problems for the generalized time fractional diffusion equation of distributed order. Frac. Cal. Appl. Anal. 12(4), 409–422 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Luchko, Y.: Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 351(1), 218–223 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Meerschaert, M.M., Nane, E., Vellaisamy, P.: Distributed-order fractional diffusions on bounded domains. J. Math. Anal. Appl. 379(1), 216–228 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Morgado, M.L., Rebelo, M.: Numerical approximation of distributed order reaction diffusion equations. J. Comput. Appl. Math. 275, 216–227 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Morton, K.W., Mayers, D.F.: Numerical Solution of Partial Differential Equations, 2nd edn. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  31. Mashayekhi, S., Razzaghi, M.: Numerical solution of distributed order fractional differential equations by hybrid functions. J. Comput. Phys. 315, 169–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. McLean, W., Mustapha, K.: Time-stepping error bounds for fractional diffusion problems with nonsmooth initial data. J. Comput. Phys. 293, 201–217 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ye, H., Liu, F., Anh, V., Turner, I.: Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains. IMA J. Appl. Math. 80, 825–838 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, Y.-N., Sun, Z.-Z., Liao, H.-L.: Finite difference methods for the time fractional diffusion equation on nonuniform meshes. J. Comput. Phys. 265, 195–210 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seakweng Vong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Hl., Lyu, P., Vong, S. et al. Stability of fully discrete schemes with interpolation-type fractional formulas for distributed-order subdiffusion equations. Numer Algor 75, 845–878 (2017). https://doi.org/10.1007/s11075-016-0223-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0223-7

Keywords