Skip to main content
Log in

A two-sided short-recurrence extended Krylov subspace method for nonsymmetric matrices and its relation to rational moment matching

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We present an extended Krylov subspace analogue of the two-sided Lanczos method, i.e., a method which, given a nonsingular matrix A and vectors b, c with \(\left \langle {{\mathbf {b}},{\mathbf {c}}}\right \rangle \neq 0\), constructs bi-orthonormal bases of the extended Krylov subspaces \({\mathcal {E}}_{m}(A,{\mathbf {b}})\) and \({\mathcal {E}}_{m}(A^{T}\!,{\mathbf {c}})\) via short recurrences. We investigate the connection of the proposed method to rational moment matching for bilinear forms c T f(A)b, similar to known results connecting the two-sided Lanczos method to moment matching. Numerical experiments demonstrate the quality of the resulting approximations and the numerical behavior of the new extended Krylov subspace method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baroni, S., Gebauer, R., Malcioğlu, O.B., Saad, Y., Umari, P., Xian, J.: Harnessing molecular excited states with Lanczos chains. J. Phys-Condens. Mat. 22, 074204 (2010)

    Article  Google Scholar 

  2. Benzi, M., Boito, P.: Quadrature rule-based bounds for functions of adjacency matrices. Linear Algebra Appl. 433, 637–652 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bowler D.R., Miyazaki, T.: \(\mathcal {O}(n)\) methods in electronic structure calculations. Rep. Prog. Phys. 75, 036503 (2012)

    Article  Google Scholar 

  4. Davis, T.A., Hu, Y.: The University of Florida Sparse Matrix Collection. ACM T. Math. Software 38, 1–25 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Druskin, V., Knizhnerman, L.: Extended Krylov subspaces: approximation of the matrix square root and related functions. SIAM J. Matrix Anal. Appl. 19, 775–771 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. van den Eshof, J., Hochbruck, M.: Preconditioning Lanczos approximations to the matrix exponential. SIAM J. Sci. Comput. 27, 1438–1457 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Estrada, E., Higham, D.: Network properties revealed through matrix functions. SIAM Rev. 52, 696–714 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Faber, V., Manteuffel, T.: Necessary and sufficient conditions for the existence of a conjugate gradient method. SIAM J. Numer. Anal. 21, 352–362 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Freund, R.W., Gutknecht, M.H., Nachtigal, N.M.: An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices. SIAM J. Sci. Comput. 14, 137–158 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Freund R.W., Hochbruck, M.: Gauss quadrature associated with the Arnoldi process and the Lanczos algorithm. In: Moonen, M.S., Golub, G.H., De Moor, B. (eds.) Linear algebra for large scale and real-time applications, pp. 377–380. Kluwer, Dordrecht (1993)

    Chapter  Google Scholar 

  11. Golub, G.H.: Bounds for matrix moments. Rocky Mt. J. Math. 4, 207–212 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  12. Golub, G.H., Meurant, G.: Matrices, moments and quadrature. In: Griffiths D.F., Watson, G.A. (eds.) Numerical Analysis 1993, Pitman Research Notes in Mathematics Series, vol. 303, pp. 105–156 (1994). Essex, England

    Google Scholar 

  13. Golub, G.H., Meurant, G.: Matrices, moments and quadrature. II. How to compute the norm of the error in iterative methods. BIT 37, 687–705 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Golub, G.H., Meurant, G.: Matrices, Moments and Quadrature with Applications. Princeton university press, Princeton and oxford (2010)

    MATH  Google Scholar 

  15. Guo, H., Renaut, R.A.: Estimation of u T f(a)v for large-scale unsymmetric matrices. Numer. Linear Algebra Appl. 11, 75–89 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gutknecht, M.H.: A completed theory of the unsymmetric Lanczos process and related algorithms, part I. SIAM J. Matrix Anal. Appl. 13, 594–639 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gutknecht, M.H.: A completed theory of the unsymmetric Lanczos process and related algorithms. part II. SIAM J. Matrix Anal. Appl. 15, 15–58 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Güttel, S.: Rational Krylov Methods for Operator functions, PhD thesis Fakultät für Mathematik und Informatik der Technischen Universität Bergakademie Freiberg (2010)

  19. Güttel, S.: Rational Krylov approximation of matrix functions: numerical methods and optimal pole selection. GAMM-Mitteilungen 36, 8–31 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Güttel, S., Knizhnerman, L.: A black-box rational Arnoldi variant for Cauchy–Stieltjes matrix functions. BIT 53, 595–616 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jagels, C., Reichel, L.: The extended Krylov subspace method and orthogonal Laurent polynomials. Linear Algebra Appl. 431, 441–458 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jagels, C., Reichel, L.: Recursion relations for the extended Krylov subspace method. Linear Algebra Appl. 434, 1716–1732 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jagels, C., Reichel, L.: The structure of matrices in rational Gauss quadrature. Math. Comp. 82, 2035–2060 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Knizhnerman, L., Simoncini, V.: A new investigation of the extended Krylov subspace method for matrix function evaluations. Numer. Linear Algebra Appl. 17, 615–638 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Lambers, J.V.: A spectral time-domain method for computational electrodynamics. Adv. Appl. Math. Mech. 1, 781–798 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Lambers, J.V.: Solution of time-dependent PDE through component-wise approximation of matrix functions. IAENG Int. J. Appl. Math. 41, 1–10 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Nat. Bur. Stand. 45, 255–282 (1950)

    Article  MathSciNet  Google Scholar 

  28. Lanczos, C.: Solutions of systems of linear equations by minimized iterations. J. Res. Nat. Bur. Stand. 49, 33–53 (1952)

    Article  MathSciNet  Google Scholar 

  29. Mertens, C., Vandebril, R.: Short recurrences for computing extended Krylov bases for Hermitian and unitary matrices. Numer. Math. 131, 303–328 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Moret, I., Novati, P.: RD-Rational approximations of the matrix exponential. BIT 44, 595–615 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Popolizio, M., Simoncini, V.: Acceleration techniques for approximating the matrix exponential operator. SIAM J. Matrix Anal. Appl. 30, 657–683 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ruhe, A.: Rational Krylov sequence methods for eigenvalue computation. Linear Algebra Appl. 58, 391–405 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ruhe, A.: Rational Krylov algorithms for nonsymmetric eigenvalue problems. IMA Vol. Math. Appl. 60, 149–164 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM (2003)

  35. Saad, Y., Chelikowsky, J.R., Shontz, S.M.: Numerical methods for electronic structure calculations of materials. SIAM Rev. 52, 3–54 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Simoncini, V.: A new iterative method for solving large-scale Lyapunov matrix equations. SIAM J. Sci. Comput. 29, 1268–1288 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Simoncini, V.: Extended Krylov subspace for parameter dependent systems. Appl. Numer. Math. 60, 550–560 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Strakoš, Z.: Model reduction using the Vorobyev moment problem. Numer. Algorithms 51, 363–379 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Strakoš, Z., Tichý, P.: On efficient numerical approximation of the bilinear form c A −1 b. SIAM J. Sci. Comput. 33, 565–587 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Schweitzer.

Additional information

This work was supported by Deutsche Forschungsgemeinschaft through Collaborative Research Centre SFB TRR55 “Hadron Physics from Lattice QCD”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schweitzer, M. A two-sided short-recurrence extended Krylov subspace method for nonsymmetric matrices and its relation to rational moment matching. Numer Algor 76, 1–31 (2017). https://doi.org/10.1007/s11075-016-0239-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0239-z

Keywords

Mathematics Subject Classification (2010)

Navigation