Skip to main content
Log in

Extended phase properties and stability analysis of RKN-type integrators for solving general oscillatory second-order initial value problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we study in detail the phase properties and stability of numerical methods for general oscillatory second-order initial value problems whose right-hand side functions depend on both the position y and velocity y '. In order to analyze comprehensively the numerical stability of integrators for oscillatory systems, we introduce a novel linear test model y ?(t) + ? 2 y(t) + µ y '(t)=0 with µ<2?. Based on the new model, further discussions and analysis on the phase properties and stability of numerical methods are presented for general oscillatory problems. We give the new definitions of dispersion and dissipation which can be viewed as an essential extension of the traditional ones based on the linear test model y ?(t) + ? 2 y(t)=0. The numerical experiments are carried out, and the numerical results showthatthe analysisofphase properties and stability presentedinthispaper ismoresuitableforthenumericalmethodswhentheyareappliedtothe generaloscillatory second-order initial value problem involving both the position and velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berland, J., Bogey, C., Bailly, C.: Low-dissipation and low-dispersion fourth-order Runge-Kutta algorithm. Comput. Fluids 35, 1459–1463 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bogey, C., Bailly, C.: A family of low dispersive and low dissipative explicit schemes for flow and noise computations. J. Comput. Phys. 194, 194–214 (2004)

    Article  MATH  Google Scholar 

  3. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley, New York (2003)

    Book  MATH  Google Scholar 

  4. Chawla, M.M., Rao, P.S.: A noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems. J. Comput. Appl. Math. 11, 277–281 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chawla, M.M., Rao, P.S.: A noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems, II explicit method. J. Comput. Appl. Math. 15, 329–337 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ferracina, L., Spijker, M.: Strong stability of singly-diagonally-implicit Runge-Kutta methods. J. Comput. Phys. 56, 1675–1686 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Franco, J.: New methods for oscillatory systems based on ARKN methods. Appl. Numer. Math. 56, 1040–1053 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd edn. Springer-Verlag, Berlin (1993)

    MATH  Google Scholar 

  9. Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd edn. Springer-Verlag, Berlin (1993)

    MATH  Google Scholar 

  10. Hu, F., Hussaini, M., Manthey, J.: Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics. Appl. Numer. Math. 58, 177–191 (2008)

    MATH  Google Scholar 

  11. Hundsdorfer, W., Verwer, J.G.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer-Verlag, Berlin (2003)

    Book  MATH  Google Scholar 

  12. Lambert, J.D.: Numerical Methods for Ordinary Differential Equations. Wiley, New York (1991)

    MATH  Google Scholar 

  13. Liu, K., Wu, X.: Multidimensional ARKN methods for general oscillatory second-order initial value problems. Comput. Phys. Commun. 185, 1999–2007 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nazari, F., Mohammadian, A., Charron, M.: High-order low-dissipation low-dispersion diagonally implicit Runge-Kutta schemes. J. Comput. Phys. 286, 38–48 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shi, W., Wu, X.: On symplectic and symmetric ARKN methods. Comput. Phys. Commun. 183, 1250–1258 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Simos, T.: A Runge-Kutta-Felhberg method with phase-lag of order infinity for initial-value problems with oscillating solution. Comput. Math. Appl. 25, 95–101 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Simos, T., Aguiar, J.V.: A modified Runge-Kutta method with phase-lag of order infinity for the numerical solution of the schr’oinger equation and related problems. Comput. Chem. 25, 275–281 (2001)

    Article  MATH  Google Scholar 

  18. Van de Vyver, H.: Stability and phase-lag analysis of explicit Runge-Kutta methods with variable coefficients for oscillatory problems. Comput. Phys. Commun. 173, 115–130 (2005)

  19. Van de Vyver, H.: An embedded phase-fitted modified Runge-Kutta method for the numerical integration of the radial schrodinger equation. Phys. Lett. A 352, 278–285 (2006)

  20. Van der Houwen, P., Sommeijer, B.P.: Diagonally implicit runge-kutta(-nyström) methods for oscillatory problems. SIAM J. Numer. Anal. 26, 414–429 (1989)

  21. Weinberger, H.F.: A First Course in Partial Differential Equations with Complex Variables and Transform Methods. Blaisdell, New York (1965)

    MATH  Google Scholar 

  22. Wu, X., Wang, B.: Multidimensional adapted runge-kutta-nyström methods for oscillatory systems. Comput. Phys. Commun. 181, 1955–1962 (2010)

    Article  MATH  Google Scholar 

  23. Wu, X., You, X., Li, J.: Note on derivation of order conditions for ARKN methods for perturbed oscillators. Comput. Phys. Commun. 180, 1545–1549 (2009)

    Article  MathSciNet  Google Scholar 

  24. Wu, X., You, X., Wang, B.: Structure-Preserving Algorithms for oscillatory differential equations. Springer-verlag, Berlin, Heidelberg (2013)

  25. Wu, X., You, X., Xia, J.: Order conditions for ARKN methods solving oscillatory systems. Comput. Phys. Commun. 180, 2250–2257 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The research was supported in part by the Natural Science Foundation of China under Grant 11271186, by the Specialized Research Foundation for the Doctoral Program of Higher Education under Grant 20100091110033, by the 985 Project at Nanjing University under Grant 9112020301, and by A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, by the Natural Science Foundation of Jiangsu Province under Grant BK20150934, by the Natural Science Foundation of China under Grant 11501288, and by project supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under Grant 16KJB110010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Wu, X. & Shi, W. Extended phase properties and stability analysis of RKN-type integrators for solving general oscillatory second-order initial value problems. Numer Algor 77, 37–56 (2018). https://doi.org/10.1007/s11075-017-0303-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0303-3

Keywords

Mathematics Subject Classification (2010)

Navigation