Skip to main content
Log in

Krasnoselski-Mann type iterative method for hierarchical fixed point problem and split mixed equilibrium problem

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we suggest and analyze a Krasnoselski-Mann type iterative method to approximate a common element of solution sets of a hierarchical fixed point problem for nonexpansive mappings and a split mixed equilibrium problem. We prove that sequences generated by the proposed iterative method converge weakly to a common element of solution sets of these problems. Further, we derive some consequences from our main result. Furthermore, we extend the considered iterative method to a split monotone variational inclusion problem and deduce some consequences. Finally, we give a numerical example to justify the main result. The method and results presented in this paper generalize and unify the corresponding known results in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bnouhachem, A.: Algorithms of common solution for a variational inequality, a split equilibrium problem and a hierarchical fixed point problem. Fixed Point Theory Appl. 2013, Article ID 278 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bnouhachem, A.: Strong convergence algorithm for split equilibrium problem and hierarchical fixed point problems. Sci. World J. Article ID 390956 (2014)

  3. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Bre~zis, H.: Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. Math. Stud. (Amsterdam: North-Holand) 5, 759–775 (1973)

    MathSciNet  Google Scholar 

  5. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441–453 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20, 103–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Byrne, C., Censor, Y., Gibali, A., Reich, S.: The split common null point problem. J. Nonlinear Convex Anal. 13(4), 759–775 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Cabot, A.: Proximal point algorithm controlled by a slowly vanishing term: application to hierarchical minimization. SIAM J. Optim. 15, 555–572 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in product space. Numer. Algorithms 8, 221–239 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity modulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)

    Article  Google Scholar 

  11. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59(2), 301–323 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Combettes, P. L.: The convex feasibility problem in image recovery. Adv. Imag. Electron Phys. 95, 155–453 (1996)

    Article  Google Scholar 

  13. Combettes, P.L.: Quasi-Fejerian analysis of some optimization algorithms. In: Butnariu, D., Censor, Y., Riech, S. (eds.) Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, pp 115–152. Elsevier, New York (2001)

    Chapter  Google Scholar 

  14. Combettes, P.L., Hirstoaga, S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117–136 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Geobel, K., Kirk, W. A.: Topics in metric fixed point theory Cambridge Studies in Advanced Mathematics, vol. 28. Cambridge University Press, Cambridge (1990)

  16. Kazmi, K. R., Rizvi, S.H.: Iterative approximation of a common solution of a split equilibrium problem, a variational inequality problem and a fixed point problem. J. Egyptian Math. Soc. 21, 44–51 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kazmi, K. R., Rizvi, S. H.: An iterative method for split variational inclusion problem and fixed point problem for a nonexpansive mapping. Optim. Lett. 8, 1113–1124 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Luo, Z. Q., Pang, J. S., Ralph, D.: Mathematical programs with equilibrium constraints. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  19. Marino, G., Xu, H. K.: Weak and strong convergence theorems for strict pseudocontractions in Hilbert space. J. Math. Anal. Appl. 329, 336–346 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Marino, G., Colao, V., Muglia, L., Yao, Y.: Krasnoselski-Mann iteration for hierarchical fixed-points and equilibrium problem. Bull. Aust. Math. Soc. 79, 187–200 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Moudafi, A., Théra, M.: Proximal and dynamical approaches to equilibrium problems, Lecture Notes in Economics and Mathematical Systems, vol. 477, pp 187–201. Springer-Verlag, New York (1999)

  22. Moudafi, A., Mainge, P. -E.: Towards viscosity approximations of hierarchical fixed-point problems. Fixed Point Theory Appl. 2006, Article ID 95453 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Moudafi, A.: Krasnoselski-Mann iteration for hierarchical fixed-point problems. Inverse Probl. 23, 1635–1640 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Moudafi, A., Mainge, P. -E.: Strong convergence of an iterative method for hierarchical fixed-point problems. Pac. J. Optim. 3, 529–538 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Moudafi, A.: Split monotone variational inclusions. J. Optim. Theory Appl. 150, 275–283 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yao, Y., Liou, Y. C.: Weak and strong convergence of Krasnoselski-Mann iteration for hierarchical fixed-point problems. Inverse Probl. 24, 501–508 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yamada, I., Ogura, N.: Hybrid steepest descent method for the variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings. Numer. Funct. Anal. Optim. 25, 619–655 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang, Q., Zhao, J.: Generalized KM theorem and their applications. Inverse Probl. 22, 833–844 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Kazmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazmi, K.R., Ali, R. & Furkan, M. Krasnoselski-Mann type iterative method for hierarchical fixed point problem and split mixed equilibrium problem. Numer Algor 77, 289–308 (2018). https://doi.org/10.1007/s11075-017-0316-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0316-y

Keywords

Mathematics Subject Classifications (2010)

Navigation