Skip to main content
Log in

Fast and accurate algorithm for the generalized exponential integral E ν (x) for positive real order

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We describe an algorithm for the numerical evaluation of the generalized exponential integral E ν (x) for positive values of ν and x. A detailed description of the numerical methods used in the algorithm is provided, including error bounds. Different approaches from earlier algorithms are also summarised. The performance and accuracy of the resulting algorithm is analysed and compared with open-source software packages. This analysis shows that our implementation is competitive and more robust than other state-of-the-art codes. Finally, a brief study of the implementation of E ν (x) in arbitrary-precision arithmetic is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altaç, Z.: Integrals involving Bickley and Bessel functions in radiative transfer, and generalized exponential integral functions. J. Heat Transfer 118(3), 789–792 (1996)

    Article  Google Scholar 

  2. Berend, D., Tassa, T.: Improved bounds on bell numbers and on moments of sums of random variables. Probab. Math. Stat. 30(2), 185–205 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Boost. Boost C++ Libraries. http://www.boost.org/, 2016. Last accessed 2016-12-29

  4. Borwein, D., Borwein, J.M., Crandall, R.E.: Effective laguerre asymptotics. SIAM J. Numer. Anal. 46(6), 3285–3312 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. de Bruijn, N.G.: Asymptotic Methods in Analysis. Bibliotheca mathematica Dover Publications (1970)

  6. Chandrasekhar, S.: Radiative transfer. Dover books on intermediate and advanced mathematics. Dover Publications (1960)

  7. Chiccoli, C., Lorenzutta, S., Maino, G.: A numerical method for generalized exponential integrals. Comput. Math. Appl. 14(4), 261–268 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chiccoli, C., Lorenzutta, S., Maino, G.: An algorithm for exponential integrals of real order. Computing 45(3), 269–276 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chiccoli, C., Lorenzutta, S., Maino, G.: Recent results for generalized exponential integrals. Comput. Math. Appl. 19(5), 21–29 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chiccoli, C., Lorenzutta, S., Maino, G.: Concerning some integrals of the generalized exponential-integral function. Comput. Math. Appl. 23(11), 13–21 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cody, W.J., Thacher, H.C. Jr.: Chebyshev approximations for the exponential integral E i(x). Math. Comp. 23(106), 289–303 (1969)

    MathSciNet  MATH  Google Scholar 

  12. Cuyt, A., Petersen, V., Verdonk, B., Waadeland, H., Jones, W.B., Bonan-Hamada, C.: Handbook of continued fractions for special functions. Kluwer Academic Publishers Group, Dordrecht (2007)

    Google Scholar 

  13. Dekker, T.J.: A floating-point technique for extending the available precision. Numer. Math. 18(3), 224–242 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  14. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.14 of 2016-12-21. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V. Saunders (eds.)

  15. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Galassi, et al.: Gnu scientific library: reference manual, 3rd edn. Network Theory Ltd. (2003)

  17. Gautschi, W.: Exponential integral \({\int }_{1}^{\infty }e^{-xt} t^{-n}dt\) for large values of n. J. Res. Nat. Bur. Standards 62, 123–125 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gil, A., Ruiz-antolín, D., Segura, J., Temme, N.M.: Algorithm 969: computation of the incomplete gamma function for negative values of the argument. ACM Trans. Math. Softw. 43(3), 26,1–26,9 (2016)

    Article  MathSciNet  Google Scholar 

  19. Gil, A., Segura, J., Temme, N.M.: Numerical methods for special functions. SIAM (2007)

  20. Gil, A., Segura, J., Temme, N.M.: Efficient and accurate algorithms for the computation and inversion of the incomplete gamma function ratios. SIAM J. Sci. Comput. 34(6), (2012)

  21. Henrici, P.: Applied and computational complex analysis. Vol. 2: special functions integral transforms asymptotics continued fractions. Wiley-Interscience [John Wiley & Sons], New York (1977). Reprinted in 1991

    MATH  Google Scholar 

  22. Hida, Y., Li, X.S., Bailey, D.H.: Algorithms for quad-double precision floating point arithmetic. In: Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001, pp. 155–162 (2001)

  23. Johansson, F.: Arb: A c library for ball arithmetic. ACM Commun. Comput. Algebra 47(3/4), 166–169 (2014)

    Article  Google Scholar 

  24. Johansson, F.: Computing hypergeometric functions rigorously. Working paper or preprint (2016)

  25. Johansson , F., et al.: mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 0.19). http://mpmath.org/ (2014)

  26. Kečlić, J.D., Vasić, P.M.: Some inequalities for the gamma function. Publ. Inst. Math. (Beograd) (N.S.) 11, 107–114 (1971)

    MathSciNet  Google Scholar 

  27. Knuth, D.E.: The art of computer programming, volume 2 (3rd edn.): seminumerical algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston (1997)

    Google Scholar 

  28. LeCaine, J.: A table of integrals involving the functions En(x). N.R.C. (National Research Council). National Research Council Canada, Division of Atomic Energy (1949)

  29. Moshier, S.L.: Cephes mathematical function library (2000)

  30. Olde Daalhuis, A.B.: Hyperasymptotic expansions of confluent hypergeometric functions. IMA J. Appl. Math. 49, 203–216 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ooura, T., Mori, M.: The double exponential formula for oscillatory functions over the half infinite interval. J. Comput. Appl. Math. 38(1), 353–360 (1991)

    Article  MATH  Google Scholar 

  32. Watson, G.N.: The harmonic functions associated with the parabolic cylinder. Proc. London Math. Soc. s2-17(1), 116–148 (1918)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author acknowledges Javier Segura for reading the preliminary version of the manuscript and providing useful remarks. The author also thanks the anonymous reviewer for indicating errors and suggesting improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Navas-Palencia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navas-Palencia, G. Fast and accurate algorithm for the generalized exponential integral E ν (x) for positive real order. Numer Algor 77, 603–630 (2018). https://doi.org/10.1007/s11075-017-0331-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0331-z

Keywords

Navigation