Abstract
We describe a two-parameter continuation algorithm for computing Bloch waves of Bose-Einstein condensates (BEC) in optical lattices which is governed by the Gross-Pitaevskii equation (GPE). The Fourier collocation method and fourth-order Adini’s elements with penalty are used to discretize the GPE. We propose two different approaches so that the two-parameter continuation algorithm can be modified to compute closed tubes at the four corners of the Bloch band. We also study linear stability analysis for the GPE. We show that all the discrete steady-state solutions are numerically neutrally stable. Numerical results show that the four edges of the Bloch waves are surrounded by closed loops if the coefficient of the cubic nonlinear term is greater than that of the periodic potential. Moreover, closed tubes at the four corners of the Bloch band are obtained. The numerical results display superfluidity of BEC.
Similar content being viewed by others
References
Cinti, F., Jain, P., Boninsegni, M., Micheli, A., Zoller, P., Pupillo, G.: Supersolid droplet crystal in a dipole-blockaded gas. Phys. Rev. Lett. 105, 135301 (2010)
Henkel, N., Nath, R., Pohl, T.: Three-dimensional roton excitations and supersolid formation in Rydberg-excited Bose-Einstein condensates. Phys. Rev. Lett. 104, 195302 (2010)
Henkel, N., Cinti, F., Jain, P., Pupillo, G., Pohl, T.: Supersolid vortex crystals in Rydberg-dressed Bose-Einstein condensates. Phys. Rev. Lett. 108, 265301 (2012)
Hsueh, C.-H., Lin, T.-C., Horng, T.-L., Wu, W.C.: Quantum crystals in a trapped Rydberg-dressed Bose-Einstein condensate. Phys. Rev. A 86, 013619 (2012)
Hsueh, C.-H., Tsai, Y.-C., Wu, K.-S., Chang, M.-S., Wu, W.C.: Pseudospin orders in the supersolid phases in binary Rydberg-dressed Bose-Einstein condensates. Phys. Rev. A 88, 043646 (2013)
Sriburadet, S., Wang, Y.-S., Chien, C.-S., Shih, Y.: Pseudo-arclength continuation algorithms for binary Rydberg-dressed Bose-Einstein condensates. Commun. Comput. Phys. 19, 1067–1093 (2016)
Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)
Davis, K.B., Mewes, M.-O., Anderws, M.R., Van Druten, N.J., Durfee, D.S., Kurn, D.M., Ketterle, W.: Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969 (1995)
Chen, Z., Wu, B.: Bose-Einstein condensate in a honeycomb optical lattice: fingerprint of superfluidity at the Dirac point. Phys. Rev. Lett. 107, 065301 (2011)
Wu, B., Niu, Q.: Superfluidity of Bose-Einstein condensate in an optical lattice: Landau-Zener tunnelling and dynamical instability. New J. Phys. 5, 104.1–104.24 (2003)
Gross, E.P.: Hydrodynamics of a superfluid condensate. J. Math. Phys. 4, 195–207 (1963)
Pitaevskii, L.P.: Vortex lines in an imperfect Bose gas. Zh. Eksp. Teor. Fiz. 40, 646–651 (1961)
Yukalov, V.I., Yukalova, E.P., Bagnato, V.S.: Nonlinear coherent modes of trapped Bose-Einstein condensates. Phys. Rev. A 66, 043602 (2002)
Wu, B., Niu, Q.: Nonlinear Landau-Zener tunneling. Phys. Rev. A 61, 023402 (2000)
Wu, B., Niu, Q.: Landau and dynamical instabilities of the superflow of Bose-Einstein condensates in optical lattices. Phys. Rev. A 64, 061603(R) (2001)
Diakonov, D., Jensen, L.M., Pethick, C.J., Smith, H.: Loop structure of the lowest Bloch band for a Bose-Einstein condensate. Phys. Rev. A 66, 013604 (2002)
Chien, C.-S., Chang, S.-L., Wu, B.: Two-stage continuation algorithms for Bloch waves of Bose-Einstein condensates in optical lattices. Comput. Phys. Commun. 181, 1727–1737 (2010)
Babuška, I.: The finite element method with penalty. Math. Comput. 27, 221–228 (1973)
Iooss, G., Adelmeyer, M.: : Topics in Bifurcation Theory and Applications, 2nd edn. World Scientific, Singapore (1998)
Wu, K., Saad, Y., Stathopoulos, A.: Inexact Newton preconditioning techniques for large symmetric eigenvalue problems. Electron. Trans. Numer. Anal. 7, 202–214 (1998)
Chen, H.-S., Chang, S.-L., Chien, C.-S.: Spectral collocation methods using sine functions for a rotating Bose-Einstein condensation in optical lattices. J. Comput. Phys. 231, 1553–1569 (2012)
Author information
Authors and Affiliations
Corresponding author
Additional information
B.-W. Jeng was supported by the Ministry of Science and Technology of R.O.C. (Taiwan) through Project MOST 105-2115-M-142-003.
Rights and permissions
About this article
Cite this article
Chen, HS., Chang, SL., Jeng, BW. et al. Continuation and stability analysis for Bloch waves of the Gross-Pitaevskii equation. Numer Algor 77, 709–726 (2018). https://doi.org/10.1007/s11075-017-0336-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-017-0336-7