Skip to main content
Log in

New algorithm for computing the Hermite interpolation polynomial

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Let x 0, x 1,⋯ , x n , be a set of n + 1 distinct real numbers (i.e., x i x j , for ij) and y i, k , for i = 0,1,⋯ , n, and k = 0 ,1 ,⋯ , n i , with n i ≥ 1, be given of real numbers, we know that there exists a unique polynomial p N − 1(x) of degree N − 1 where \(N={\sum }_{i=0}^{n}(n_{i}+1)\), such that \(p_{N-1}^{(k)}(x_{i})=y_{i,k}\), for i = 0,1,⋯ , n and k = 0,1,⋯ , n i . P N−1(x) is the Hermite interpolation polynomial for the set {(x i , y i, k ), i = 0,1,⋯ , n, k = 0,1,⋯ , n i }. The polynomial p N−1(x) can be computed by using the Lagrange polynomials. This paper presents a new method for computing Hermite interpolation polynomials, for a particular case n i = 1. We will reformulate the Hermite interpolation polynomial problem and give a new algorithm for giving the solution of this problem, the Matrix Recursive Polynomial Interpolation Algorithm (MRPIA). Some properties of this algorithm will be studied and some examples will also be given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atteia, M., Pradel, M.: Elments d’analyse numrique. CEPADUES-Editions (1990)

  2. Brezinski, C.: Recursive interpolation, extrapolation and projection. J. Comput. Appl. Math. 9, 369–376 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brezinski, C: Some determinantal identities in a vector space, with applications. In: Werner, H., Bunger, H.J. (eds.) Pad Approximation and its Applications, Bad-Honnef, 1983, Lecture Notes in Math., vol. 1071, pp 1–11. Springer, Berlin (1984)

    Google Scholar 

  4. Brezinski, C.: Other manifestations of the Schur complement. Linear Algebra Appl. 111, 231–247 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cottle, R.W.: Manifestations of the Schur complement. Linear Algebra Appl. 8, 189–211 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gautschi, W.: Orthogonal Polynomials Computation and Approximation. Oxford University Press (2004)

  7. Golub, G.H., Ortega, J.M.: Scientific Computing and Differential Equations. An Introduction to Numerical Methods. Academic Press (1992)

  8. Jbilou, K., Messaoudi, A.: Matrix recursive interpolation algorithm for block linear systems. Direct Methods Linear Algebra Appl. 294, 137–154 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Messaoudi, A.: Some properties of the recursive projection and interpolation algorithms. IMA J. Numer. Anal. 15, 307–318 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Messaoudi, A: Recursive interpolation algorithm: a formalism for linear equations-I: Direct methods. J. Comp. Appl. Math. 76, 13–30 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Messaoudi, A: Matrix recursive interpolation algorithm: a formalism for linear equations-II: iterative methods. J. Comp. Appl. Math. 76, 31–53 (1996)

    Article  MATH  Google Scholar 

  12. Messaoudi, A., Sadok, H.: Recursive polynomial interpolation algorithm (RPIA). To Appear in Numerical Algorithms Journal (2017)

  13. Ouellette, D.V: Schur complements and statistics. Linear Algebra Appl. 36, 187–295 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Schur, I.: Potenzreihn im innern des einheitskreises. J. Reine. Angew. Math. 147, 205–232 (1917)

    MathSciNet  Google Scholar 

  15. Stoer, J., Bulirsh, R.: Introduction to Numerical Analysis, 2nd edn. Springer-Verlag, New York (1991)

    Google Scholar 

  16. Süli, E., Mayers, D.: An Introduction to Numerical Analysis. Cambridge University Press (2003)

Download references

Acknowledgments

We are grateful to the Professor C. Brezinski for his helpful and encouragement.

We would like to thank the referee for his helpful comments and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Messaoudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messaoudi, A., Sadaka, R. & Sadok, H. New algorithm for computing the Hermite interpolation polynomial. Numer Algor 77, 1069–1092 (2018). https://doi.org/10.1007/s11075-017-0353-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0353-6

Keywords

Navigation