Skip to main content
Log in

A partitioned finite element scheme based on Gauge-Uzawa method for time-dependent MHD equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we mainly introduce a partitioned scheme based on Gauge-Uzawa finite element method for the 2D time-dependent incompressible magnetohydrodynamics (MHD) equations. It is a fully decoupled projection method which combines the Gauge and Uzawa methods within a variational formulation. Firstly, the temporal discretization is based on backward Euler technique for the linear term and semi-implicit scheme for the nonlinear term. Secondly, the spatial approximation of fluid velocity, hydrodynamic pressure, and magnetic field apply the mixed element method. Finally, the validity, reliability, and accuracy of the proposed algorithms are supported by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moreau, R.: Magnetohydrodynamics. Kluwer, Dordrecht (1990)

    Book  MATH  Google Scholar 

  2. Gerbeau, J., Le Bris, C., Lelivre, T.: Mathematical method for the magnetohydrodynamics of liquid metals. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  3. He, Y.: Unconditional convergence of the Euler semi-implicit scheme for the 3D incompressible MHD equations. IMA J. Numer. Anal. 35, 707–801 (2015)

    Google Scholar 

  4. Layton, W., Tran, H., Trenchea, C.: Numerical analysis of two parititioned methods for uncoupling evolutionary MHD flows. Numer. Methods Partial Differ. Equ 30, 1083–1102 (2014)

    Article  MATH  Google Scholar 

  5. Gerbeau, J.: A stabilized finite element method for the incompressible magnetohydrodynamic equations. Numer. Math. 87, 83–111 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yuksel, G., Ingram, R.: Numerical analysis of a finite element. Crank-Nicolson discretization for MHD flows at small magnetic Reynolds numbers. Int. J. Numer. Anal. Model 10, 74–98 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math. 36, 635–664 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gunzburger, M., Meir, A., Peterson, J.: On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics. Math. Comp. 56, 523–563 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Shötzau, D.: Mixed finite element methods for stationary incompressible magnetohydrodynamics. Numer. Math. 96, 771–800 (2004)

    Article  MathSciNet  Google Scholar 

  10. Gunzburger, M., Trenchea, C.: Optimal control of the time-periodic MHD equations. Nonlinear Anal. 63, 1687–1699 (2005)

    Article  MATH  Google Scholar 

  11. Aydin, S., Nesliturk, A., Tezer-Sezgin, M.: Two-level finite element method with a stabilizing subgrid for the incompressible MHD equations. Inter. J. Numer. Meth. Fluids 62, 188–210 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Zhang, G., He, Y.: Unconditional convergence of the Euler semi-implicit scheme for the 3D incompressible MHD equations: numerical implementation. Inter. J. Numer. Method Heat Fluid Flow 25(8), 1912–1923 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang, G., He, Y.: Decoupled schemes for unsteady MHD equations. I. time discretization, Numer. Method Part. Diff. Equ. 33(3), 956–973 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, G., He, Y.: Decoupled schemes for unsteady MHD equations II: Finite element spatial discretization and numerical implementation. Comput. Math. Appl. 69, 1390–1406 (2015)

    Article  MathSciNet  Google Scholar 

  15. Yang, J., He, Y.: Stability and error analysis for the first-order Euler implicit/explicit scheme for the 3D MHD equations, International Journal of Computer Methods, pp. 1750077. doi:10.1142/S0219876217500773 (2017)

  16. Su, H., Feng, X., Huang, P.: Iterative methods in penalty finite element discretization for the steady MHD equations. Comput. Method Appl. Mech. Eng. 304, 521–545 (2016)

    Article  MathSciNet  Google Scholar 

  17. Su, H., Feng, X., Zhao, J.: Two-level penalty Newton iterative method for the 2D/3D stationary incompressible magnetohydrodynamics equations. J. Sci. Comput. 70(3), 1144–1179 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhu, T., Su, H., Feng, X.: Some Uzawa-type finite element iterative methods for the steady incompressible magnetohydrodynamic equations. Appl. Math. Comput. 302, 34–47 (2017)

    MathSciNet  Google Scholar 

  19. Wu, J., Liu, D., Feng, X., Huang, P.: An efficient two-step algorithm for the stationary incompressible magnetohydrodynamic equations. Appl. Math. Comput. 302, 21–33 (2017)

    MathSciNet  Google Scholar 

  20. Chorin, A.: Numerical solution of the Navier-Stokes equations. Math. Comput. 22, 745–762 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  21. Temam, R.: Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires II. Arch. Ration. Mech. Anal. 33, 377–385 (1969)

    Article  MATH  Google Scholar 

  22. Oseledets, V.: On a new form of writing out the Navier-Stokes equation. Russ. Math. Surv. 44, 210–211 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, W.E.J.: Gauge method for viscous incompressible flows. Comm. Math. Sci. 1, 317–332 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nochetto, R., Pyo, J.: The Gauge-Uzawa finite element method. Part I: the Navier-Stokes equations. SIAM J. Numer. Anal. 43, 1043–1086 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nochetto, R., Pyo, J.: The Gauge-Uzawa finite element method. Part II: the Boussinesq equations. Math. Model Method Appl. Sci. 16, 1599–1626 (2006)

    Article  MATH  Google Scholar 

  26. Pyo, J.: Optimal error estimate for semi-discrete Gauge-Uzawa method for the Navier-Stokes equations. Bull. Korean Math. Soc. 46, 627–644 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pyo, J.: Error estimate for the second order semi-discrete stabilized Gauge-Uzawa method for the Navier-Stokes equations. Int. J. Numer. Anal. Model 10, 24–41 (2013)

    MathSciNet  Google Scholar 

  28. Hay, G.: Vector and tensor analysis, Dover Publications (1953)

  29. Heywood, J., Rannacher, R.: Finite-element approximation of the nonstationary Navier-Stokes problem. Part IV: Error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ascher, U., Ruuth, S., Wetton, B.: Implicit-explicit methods for time-dependent PDE’s. SIAM J. Numer. Anal. 32, 797–823 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and referees for their valuable comments and suggestions which helped us to improve the results of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Su.

Additional information

This work is in part supported by the NSF of China (No. 11671345 and No. 11362021) and the NSF of Xinjiang Province (No. 2016D01C058)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Su, H. & Feng, X. A partitioned finite element scheme based on Gauge-Uzawa method for time-dependent MHD equations. Numer Algor 78, 277–295 (2018). https://doi.org/10.1007/s11075-017-0376-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0376-z

Keywords

Navigation