Skip to main content
Log in

A supernodal block factorized sparse approximate inverse for non-symmetric linear systems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The concept of supernodes, originally developed to accelerate direct solution methods for linear systems, is generalized to block factorized sparse approximate inverse (Block FSAI) preconditioning of non-symmetric linear systems. It is shown that aggregating the unknowns in clusters that are processed together is particularly useful both to reduce the cost for the preconditioner setup and accelerate the convergence of the iterative solver. A set of numerical experiments performed on matrices arising from the meshfree discretization of 2D and 3D potential problems, where a very large number of nodal contacts is usually found, shows that the supernodal Block FSAI preconditioner outperforms the native algorithm and exhibits a much more stable behavior with respect to the variation of the user-specified parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comput. Phys. 182, 418–477 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ferronato, M.: Preconditioning for sparse linear systems at the dawn of the 21st century: history, current developments, and future perspectives. ISRN Appl. Math. doi:10.5402/2012/127647 (2012)

  3. Raghavan, P., Teranishi, K.: Parallel hybrid preconditioning: incomplete factorization with selective sparse approximate inversion. SIAM J. Sci. Comput. 32, 1323–1345 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Helfenstein, R., Koko, J.: Parallel preconditioned conjugate gradient algorithm on GPU. J. Comput. Appl. Math. 236, 3584–3590 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Janna, C., Ferronato, M., Gambolati, G.: Enhanced block FSAI preconditioning using domain decomposition techniques. SIAM J. Sci. Comput. 35, S229–S249 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chow, E., Patel, A.: Fine-grained parallel incomplete LU factorization. SIAM J. Sci. Comput. 37, C169–C193 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Janna, C., Ferronato, M., Sartoretto, F., Gambolati, G.: FSAIPACK: A software package for high performance FSAI preconditioning. ACM Transactions on Mathematical Software 41, paper no. 10 (2015)

  8. Grigori, L., Moufawad, S.: Communication avoiding ILU0 preconditioner. SIAM J. Sci. Comput. 37, C217–C246 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Janna, C., Ferronato, M., Gambolati, G.: A Block FSAI-ILU parallel preconditioner for symmetric positive definite linear systems. SIAM J. Sci. Comput. 32, 2468–2484 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ferronato, M., Janna, C., Pini, G.: A generalized Block FSAI preconditioner for nonsymmetric linear systems. J. Comput. Appl. Math. 256, 230–241 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ferronato, M., Janna, C., Pini, G.: Efficient parallel solution to large-size sparse eigenproblems with block FSAI preconditioning. Numer. Linear Algebra Appl. 19, 797–815 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ferronato, M., Janna, C., Pini, G.: Parallel Jacobi-Davidson with block FSAI preconditioning and controlled inner iterations. Numer. Linear Algebra Appl. 23, 394–409 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Janna, C., Ferronato, M.: Adaptive pattern research for Block FSAI preconditioning. SIAM J. Sci. Comput. 33, 3357–3380 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chow, E.: A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM J. Sci. Comput. 21, 1804–1822 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear equations. ACM Trans. Math. Softw. 9, 302–325 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ashcraft, C., Grimes, R.G.: The influence of relaxed supernode partitions on the multifrontal method. ACM Trans. Math. Softw. 15, 291–309 (1989)

    Article  MATH  Google Scholar 

  17. Ashcraft, C.: Compressed graphs and the minimum degree algorithm. SIAM J. Sci. Comput. 16, 1404–1411 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gupta, A., George, T.: Adaptive techniques for improving the performance of incomplete factorization preconditioning. SIAM J. Sci. Comput. 32, 84–110 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Vannieuwenhoven, N., Meerbergen, K.: IMF: An Incomplete multifrontal LU-factorization for element-structured sparse linear systems. SIAM J. Sci. Comput. 35, A270–A293 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Janna, C., Ferronato, M., Gambolati, G.: The use of supernodes in factored sparse approximate inverse preconditioning. SIAM J. Sci. Comput. 37, C72–C94 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huckle, T.: Approximate sparsity patterns for the inverse of a matrix and preconditioning. Appl. Numer. Math. 30, 291–303 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lin, C., Moré, J.J.: Incomplete Cholesky factorizations with limited memory. SIAM J. Sci. Comput. 21, 24–45 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Janna, C., Castelletto, N., Ferronato, M.: The effect of graph partitioning techniques on parallel Block FSAI preconditioning: a computational study. Numer. Algorithms 68, 813–836 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  25. Mirzaei, D., Schaback, R.: Direct meshless local Petrov-Galerkin (DMLPG) method: A generalized MLS approximation. Appl. Numer. Math. 68, 73–82 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Atluri, S.N., Zhu, T.: The meshless local Petrov-Galerkin (MLPG) method: A simple and less costly alternative to the finite element methods. Comput. Model. Eng. Sci. 3, 11–51 (2002)

    MathSciNet  MATH  Google Scholar 

  27. Mirzaei, D., Schaback, R., Dehghan, M.: On generalized moving least squares and diffuse derivatives. IMA J. Numer. Anal. 32, 983–1000 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mazzia, A., Pini, G., Sartoretto, F.: A DMPLG refinement technique for 2D and 3D potential problems. Comput. Model. Eng. Sci. 108, 239–262 (2015)

    Google Scholar 

  29. Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM Trans. Math. Softw. 38, 1–25 (2011)

    MathSciNet  MATH  Google Scholar 

  30. van der Vorst, H.A.: Bi-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by the University of Padova project “Stable and efficient discretization of the mechanics of faults” and by the ISCRA project IsC36_PRECISO. The authors are indebted to Carlo Janna for his contribution in the code implementation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Ferronato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferronato, M., Pini, G. A supernodal block factorized sparse approximate inverse for non-symmetric linear systems. Numer Algor 78, 333–354 (2018). https://doi.org/10.1007/s11075-017-0378-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0378-x

Keywords

Mathematics Subject Classification (2010)

Navigation