Abstract
In this paper, we propose a two-parameter preconditioned variant of the deteriorated PSS iteration method (J. Comput. Appl. Math., 273, 41–60 (2015)) for solving singular saddle point problems. Semi-convergence analysis shows that the new iteration method is convergent unconditionally. The new iteration method can also be regarded as a preconditioner to accelerate the convergence of Krylov subspace methods. Eigenvalue distribution of the corresponding preconditioned matrix is presented, which is instructive for the Krylov subspace acceleration. Note that, when the leading block of the saddle point matrix is symmetric, the new iteration method will reduce to the preconditioned accelerated HSS iteration method (Numer. Algor., 63 (3), 521–535 2013), the semi-convergence conditions of which can be simplified by the results in this paper. To further improve the effectiveness of the new iteration method, a relaxed variant is given, which has much better convergence and spectral properties. Numerical experiments are presented to investigate the performance of the new iteration methods for solving singular saddle point problems.
Similar content being viewed by others
References
Bai, Z.-Z.: Structured preconditioners for nonsingular matrices of block two-by-two structures. Math. Comput. 75(254), 791–815 (2006)
Bai, Z.-Z.: Several splittings for non-Hermitian linear systems. Sci. China, Ser. A: Math. 51(8), 1339–1348 (2008)
Bai, Z.-Z.: Optimal parameters in the HSS-like methods for saddle-point problems. Numer. Linear Algebra Appl. 16(6), 447–479 (2009)
Bai, Z.-Z.: On semi-convergence of Hermitian and skew-Hermitian splitting methods for singular linear systems. Computing 89(3), 171–197 (2010)
Bai, Z.-Z., Golub, G.H.: Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems. IMA J. Numer. Anal. 27(1), 1–23 (2007)
Bai, Z.-Z., Golub, G.H., Li, C.-K.: Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices. SIAM J. Sci. Comput. 28(2), 583–603 (2006)
Bai, Z.-Z., Golub, G.H., Li, C.-K.: Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices. Math. Comput. 76(257), 287–298 (2007)
Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24(3), 603–626 (2003)
Bai, Z.-Z., Golub, G.H., Ng, M.K.: On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations. Numer. Linear Algebra Appl. 14(4), 319–335 (2007)
Bai, Z.-Z., Golub, G.H., Ng, M.K.: On inexact Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. Linear Algebra Appl. 428(2), 413–440 (2008)
Bai, Z.-Z., Golub, G.H., Pan, J.-Y.: Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer. Math. 98(1), 1–32 (2004)
Bai, Z.-Z., Li, G.-Q.: Restrictively preconditioned conjugate gradient methods for systems of linear equations. IMA J. Numer. Anal. 23(4), 561–580 (2003)
Bai, Z.-Z., Parlett, B.N., Wang, Z.-Q.: On generalized successive overrelaxation methods for augmented linear systems. Numer. Math. 102(1), 1–38 (2005)
Bai, Z.-Z., Wang, Z.-Q.: On parameterized inexact Uzawa methods for generalized saddle point problems. Linear Algebra Appl. 428(11–12), 2900–2932 (2008)
Bai, Z.-Z., Yin, J.-F., Su, Y.-F.: A shift-splitting preconditioner for non-Hermitian positive definite matrices. J. Comput. Math. 24(4), 539–552 (2006)
Benzi, M.: A generalization of the Hermitian and skew-Hermitian splitting iteration. SIAM J. Matrix Anal. Appl. 31(2), 360–374 (2009)
Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)
Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Academic, New York (1979)
Björck, A.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)
Botchev, M.A., Golub, G.H.: A class of nonsymmetric preconditioners for saddle point problems. SIAM J. Matrix Anal. Appl. 27(4), 1125–1149 (2006)
Bramble, J.H., Pasciak, J.E., Vassilev, A.T.: Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer Anal. 34(3), 1072–1092 (1997)
Bramble, J.H., Pasciak, J.E., Vassilev, A.T.: Uzawa type algorithms for nonsymmetric saddle point problems. Math Comput. 69(230), 667–689 (2000)
Cao, Y., Dong, J.-L., Wang, Y.-M.: A relaxed deteriorated PSS preconditioner for nonsymmetric saddle point problems from the steady Navier-Stokes equation. J. Comput. Appl. Math. 273, 41–60 (2015)
Cao, Y., Miao, S.-X.: On semi-convergence of the generalized shift-splitting iteration method for singular nonsymmetric saddle point problems. Comput. Math. Appl. 71(7), 1503–1511 (2016)
Cao, Z.-H.: Comparison of performance of iterative methods for singular and nonsingular saddle point linear systems arising from Navier–Stokes equations. Appl. Math Comput. 174(1), 630–642 (2006)
Chao, Z., Chen, G.-L.: A note on semi-convergence of generalized parameterized inexact Uzawa method for singular saddle point problems. Numer. Algor. 68(1), 95–105 (2015)
Chao, Z., Zhang, N.-M.: A generalized preconditioned HSS method for singular saddle point problems. Numer. Algor. 66(2), 203–221 (2014)
Chen, C.-R., Ma, C.-F.: A generalized shift-splitting preconditioner for singular saddle point problems. Appl. Math Comput. 269, 947–955 (2015)
Chen, Y., Zhang, N.-M.: A note on the generalization of parameterized inexact Uzawa method for singular saddle point problems. Appl. Math Comput. 235, 318–322 (2014)
Darvishi, M.T., Hessari, P.: A modified symmetric successive overrelaxation method for augmented systems. Comput. Math Appl. 61(10), 3128–3135 (2011)
Dollar, H.S.: Constraint-style preconditioners for regularized saddle point problems. SIAM J. Matrix Anal. Appl. 29(2), 672–684 (2007)
Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics. Oxford University Press (2005)
Hadjidimos, A.: The saddle point problem and the Manteuffel algorithm. BIT Numer. Math. 56, 1281–1302 (2016)
Keller, C., Gould, N.I., Wathen, A.J.: Constraint preconditioning for indefinite linear systems. SIAM J. Matrix Anal. Appl. 21(4), 1300–1317 (2000)
Li, J.-L., Huang, T.-Z., Luo, D.: The semi-convergence of generalized SSOR method for singular augmented systems. Int. J. Numer. Anal. Model. 9(2), 270–275 (2012)
Liang, Z.-Z., Zhang, G.-F.: On semi-convergence of a class of Uzawa methods for singular saddle-point problems. Appl. Math. Comput. 247, 397–409 (2014)
Liang, Z.-Z., Zhang, G.-F.: Semi-convergence analysis of the GPIU method for singular nonsymmetric saddle-point problems. Numer. Algor. 70(1), 151–169 (2015)
Ma, H.-F., Zhang, N.-M.: A note on block-diagonally preconditioned PIU methods for singular saddle point problems. Int. J. Comput. Math. 88(16), 3448–3457 (2011)
Murphy, M.F., Golub, G.H., Wathen, A.J.: A note on preconditioning for indefinite linear systems. SIAM J. Sci Comput. 21(6), 1969–1972 (2000)
Pan, J.-Y., Ng, M.K., Bai, Z.-Z.: New preconditioners for saddle point problems. Appl. Math Comput. 172(2), 762–771 (2006)
Simoncini, V.: Block triangular preconditioners for symmetric saddle-point problems. Appl. Numer. Math. 49(1), 63–80 (2004)
Wang, R.-R., Niu, Q., Ma, F., Lu, L.-Z.: Spectral properties of a class of matrix splitting preconditioners for saddle point problems. J. Comput. Appl. Math. 298, 138–151 (2016)
Wang, S.-S., Zhang, G.-F.: Preconditioned AHSS iteration method for singular saddle point problems. Numer. Algor. 63(3), 521–535 (2013)
Wu, X., Silva, B.P.B., Yuan, J.-Y.: Conjugate gradient method for rank deficient saddle point problems. Numer. Algor. 35(2), 139–154 (2004)
Yang, A.-L., Dou, Y., Wu, Y.-J., Li, X.: On generalized parameterized inexact Uzawa methods for singular saddle-point problems. Numer. Algor. 69(3), 579–593 (2015)
Yin, J.-F., Bai, Z.-Z.: The restrictively preconditioned conjugate gradient methods on normal residual for block two-by-two linear systems. J. Comput. Math. 26(2), 240–249 (2008)
Zhang, G.-F., Lu, Q.-H.: On generalized symmetric SOR method for augmented systems. J. Comput. Appl. Math. 219(1), 51–58 (2008)
Zhang, G.-F., Ren, Z.-R., Zhou, Y.-Y.: On HSS-based constraint preconditioners for generalized saddle-point problems. Numer. Algor. 57(2), 273–287 (2011)
Zhang, G.-F., Wang, S.-S.: A generalization of parameterized inexact Uzawa method for singular saddle point problems. Appl. Math Comput. 219(9), 4225–4231 (2013)
Zhang, N.-M.: A note on preconditioned GMRES for solving singular linear systems. BIT Numer. Math. 50(1), 207–220 (2010)
Zhang, N.-M., Lu, T.-T., Wei, Y.-M.: Semi-convergence analysis of Uzawa methods for singular saddle point problems. J. Comput. Appl Math. 255, 334–345 (2014)
Zhang, N.-M., Shen, P.: Constraint preconditioners for solving singular saddle point problems. J. Comput. Appl Math. 238, 116–125 (2013)
Zheng, B., Bai, Z.-Z., Yang, X.: On semi-convergence of parameterized Uzawa methods for singular saddle point problems. Linear Algebra Appl. 431(5–7), 808–817 (2009)
Zhou, L.-J., Zhang, N.-M.: Semi-convergence analysis of GMSSOR methods for singular saddle point problems. Comput. Math Appl. 68(5), 596–605 (2014)
Acknowledgements
We would like to express our sincere thanks to the unknown reviewers for their careful reading of the manuscript. Their useful comments and valuable suggestions greatly improve the quality of the paper.
Author information
Authors and Affiliations
Corresponding authors
Additional information
This work was supported by the National Natural Science Foundation of China (No. 11271174).
Rights and permissions
About this article
Cite this article
Liang, ZZ., Zhang, GF. Semi-convergence analysis of preconditioned deteriorated PSS iteration method for singular saddle point problems. Numer Algor 78, 379–404 (2018). https://doi.org/10.1007/s11075-017-0380-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-017-0380-3