Skip to main content
Log in

Boundary layer preconditioners for finite-element discretizations of singularly perturbed reaction-diffusion problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We consider the iterative solution of linear systems of equations arising from the discretization of singularly perturbed reaction-diffusion differential equations by finite-element methods on boundary-fitted meshes. The equations feature a perturbation parameter, which may be arbitrarily small, and correspondingly, their solutions feature layers: regions where the solution changes rapidly. Therefore, numerical solutions are computed on specially designed, highly anisotropic layer-adapted meshes. Usually, the resulting linear systems are ill-conditioned, and so, careful design of suitable preconditioners is necessary in order to solve them in a way that is robust, with respect to the perturbation parameter, and efficient. We propose a boundary layer preconditioner, in the style of that introduced by MacLachlan and Madden for a finite-difference method (MacLachlan and Madden, SIAM J. Sci. Comput. 35(5), A2225–A2254 2013). We prove the optimality of this preconditioner and establish a suitable stopping criterion for one-dimensional problems. Numerical results are presented which demonstrate that the ideas extend to problems in two dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, J., MacLachlan, S., Madden, N.: A first-order system Petrov-Galerkin discretisation for a reaction-diffusion problem on a fitted mesh. IMA J. Numer. Anal. 36(3), 1281–1309 (2016). https://doi.org/10.1093/imanum/drv045

    Article  MathSciNet  Google Scholar 

  2. Alcouffe, R.E., Brandt, A., Dendy, J.E. Jr., Painter, J.W.: The multigrid method for the diffusion equation with strongly discontinuous coefficients. SIAM J. Sci. Statist. Comput. 2(4), 430–454 (1981). https://doi.org/10.1137/0902035

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson, E., Bai, Z., Bischof, C., Blackford, L.S., Demmel, J., Dongarra, J.J., Du Croz, J., Hammarling, S., Greenbaum, A., McKenney, A., Sorensen, D.: LAPACK Users' Guide, 3rd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, USA (1999)

  4. Bakhvalov, N.: Towards optimization of methods for solving boundary value problems in the presence of boundary layers. Zh. Vychisl. Mat. i Mat. Fiz. 9, 841–859 (1969)

    Google Scholar 

  5. Briggs, W.L., Henson, V.E., McCormick, S.F.: A multigrid tutorial, 2 edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2000). https://doi.org/10.1137/1.9780898719505

  6. Chen, Y., Davis, T.A., Hager, W.W., Rajamanickam, S.: Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Trans. Math. Softw. 35(3), 22:1–22:14 (2008). https://doi.org/10.1145/1391989.1391995

    Article  MathSciNet  Google Scholar 

  7. Davis, T.A.: Direct methods for sparse linear systems, Fundamentals of Algorithms, vol. 2. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2006). https://doi.org/10.1137/1.9780898718881

  8. Dendy, J.E. Jr.: Black box multigrid. J. Comput. Phys. 48(3), 366–386 (1982). https://doi.org/10.1016/0021-9991(82)90057-2

    Article  MathSciNet  MATH  Google Scholar 

  9. Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Robust Computational Techniques for Boundary Layers. No. 16 in Applied Mathematics. Chapman & Hall/CRC, Boca Raton (2000)

    MATH  Google Scholar 

  10. Gaspar, F., Clavero, C., Lisbona, F.: Some numerical experiments with multigrid methods on Shishkin meshes. J. Comput. Appl. Math. 138(1), 21–35 (2002). https://doi.org/10.1016/S0377-0427(01)00365-X

    Article  MathSciNet  MATH  Google Scholar 

  11. Gaspar, F., Lisbona, F., Clavero, C.: Numerical Analysis and Its Applications, Lecture Notes in Computer Science, vol. 1988, pp. 128–135. Springer Berlin / Heidelberg. In: Vulkov, L., Yalamov, P., Wasniewski, J. (eds.) (2001). https://doi.org/10.1007/3-540-45262-1_37

  12. George, A.: Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10, 345–363 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kopteva, N., Madden, N., Stynes, M.: Grid equidistribution for reaction-diffusion problems in one dimension. Numer. Algorithms 40(3), 305–322 (2005). https://doi.org/10.1007/s11075-005-7079-6

    Article  MathSciNet  MATH  Google Scholar 

  14. LAPACK version 3.5.0: Subroutine DPTTRS. www.netlib.org/lapack/

  15. Linß, T.: Layer-adapted meshes for reaction-convection-diffusion problems. Lecture notes in Mathematics 1985. Berlin: Springer. xi, 320 p. (2010). https://doi.org/10.1007/978-3-642-05134-0

  16. Liu, F., Madden, N., Stynes, M., Zhou, A.: A two-scale sparse grid method for a singularly perturbed reaction-diffusion problem in two dimensions. IMA J. Numer. Anal. 29(4), 986–1007 (2009). https://doi.org/10.1093/imanum/drn048

    Article  MathSciNet  MATH  Google Scholar 

  17. MacLachlan, S., Madden, N.: Robust solution of singularly perturbed problems using multigrid methods. SIAM J. Sci. Comput. 35(5), A2225–A2254 (2013). https://doi.org/10.1137/120889770

    Article  MathSciNet  MATH  Google Scholar 

  18. Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted numerical methods for singular perturbation problems, revised edn. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ. Error estimates in the maximum norm for linear problems in one and two dimensions (2012). https://doi.org/10.1142/9789814390743

  19. Nhan, T.A., Madden, N.: Cholesky factorisation of linear systems coming from finite difference approximations of singularly perturbed problems. In: BAIL 2014–Boundary and Interior Layers, Computational and Asymptotic Methods, Lect. Notes Comput. Sci. Eng., pp. 209–220. Springer International Publishing (2015). https://doi.org/10.1007/978-3-319-25727-3_16

  20. Roos, H.G.: A note on the conditioning of upwind schemes on Shishkin meshes. IMA J. Numer. Anal. 16(4), 529–538 (1996). https://doi.org/10.1093/imanum/16.4.529

    Article  MathSciNet  MATH  Google Scholar 

  21. Roos, H.G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Springer Series in Computational Mathematics, 2nd edn., vol. 24. Springer, Berlin (2008)

    MATH  Google Scholar 

  22. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic Press, Inc, San Diego (2001)

    MATH  Google Scholar 

  23. Wathen, A.J.: Realistic eigenvalue bounds for the Galerkin mass matrix. IMA J. Numer. Anal. 7(4), 449–457 (1987). https://doi.org/10.1093/imanum/7.4.449

    Article  MathSciNet  MATH  Google Scholar 

  24. Wesseling, P.: An introduction to multigrid methods. Pure and Applied Mathematics (New York). Wiley, Chichester (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niall Madden.

Additional information

The work of SM was partially supported by an NSERC Discovery Grant; the work of TAN was supported by the Irish Research Council under Grant No. RS/2011/179.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nhan, T.A., MacLachlan, S. & Madden, N. Boundary layer preconditioners for finite-element discretizations of singularly perturbed reaction-diffusion problems. Numer Algor 79, 281–310 (2018). https://doi.org/10.1007/s11075-017-0437-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0437-3

Keywords