Skip to main content
Log in

Zeros of Jacobi polynomials \( P_{n}^{(\alpha ,\beta)} \), − 2 < α, β < − 1

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The sequence of Jacobi polynomials \(\{P_{n}^{(\alpha ,\beta )}\}_{n = 0}^{\infty }\) is orthogonal on (− 1,1) with respect to the weight function (1 − x)α(1 + x)β provided α > − 1,β > − 1. When the parameters α and β lie in the narrow range − 2 < α, β < − 1, the sequence of Jacobi polynomials \(\{P_{n}^{(\alpha ,\beta )}\}_{n = 0}^{\infty }\) is quasi-orthogonal of order 2 with respect to the weight function (1 − x)α+ 1(1 + x)β+ 1 and each polynomial of degree n,n ≥ 2, in such a Jacobi sequence has n real zeros. We show that any sequence of Jacobi polynomials \(\{P_{n}^{(\alpha ,\beta )}\}_{n = 0}^{\infty }\) with − 2 < α, β < − 1, cannot be orthogonal with respect to any positive measure by proving that the zeros of Pn− 1(α,β) do not interlace with the zeros of Pn(α,β) for any \(n \in \mathbb {N},\)n ≥ 2, and any α,β lying in the range − 2 < α, β < − 1. We also investigate interlacing properties satisfied by the zeros of equal degree Jacobi polynomials Pn(α,β),Pn(α,β+ 1) and Pn(α+ 1,β+ 1) where − 2 < α, β < − 1. Upper and lower bounds for the extreme zeros of quasi-orthogonal order 2 Jacobi polynomials Pn(α,β) with − 2 < α, β < − 1 are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Askey, R.A.: Graphs as an aid to understanding special functions, asymptotic and computational analysis. Winnipeg 1989. Lecture Notes in Pure and Applied Mathematics. pp. 3–33 (1990)

  2. Brezinski, C., Driver, K., Redivo-Zaglia, M.: Quasi-orthogonality with applications to some families of classical orthogonal polynomials. Appl. Numer. Math. 48, 157–168 (2004)

    Article  MathSciNet  Google Scholar 

  3. Chihara, T.S.: On quasi–orthogonal polynomials. Proc. Amer. Math. Soc. 8, 765–767 (1957)

    Article  MathSciNet  Google Scholar 

  4. Dimitrov, D.K., Ismail, M.E.H., Rafaeli, F.R.: Interlacing of zeros of orthogonal polynomials under modification of the measure. J. Approx. Theory. 175, 64–76 (2013)

    Article  MathSciNet  Google Scholar 

  5. Driver, K., Jordaan, K., Mbuyi, N.: Interlacing of the zeros of Jacobi polynomials with different parameters. Numer. Alg. 49, 143–152 (2008)

    Article  MathSciNet  Google Scholar 

  6. Driver, K., Jooste, A., Jordaan, K.: Stieltjes interlacing of zeros of Jacobi polynomials from different sequences. Electron. Trans. Numer. Anal. 38, 317–326 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Driver, K., Muldoon, M.E.: Zeros of quasi-orthogonal ultraspherical polynomials. Indag. Math. 27(4), 930–944 (2016)

    Article  MathSciNet  Google Scholar 

  8. Driver, K., Muldoon, M.E.: Bounds for the extreme zeros of quasi-orthogonal ultraspherical polynomials. J. Classical Anal. 9, 69–78 (2016)

    Article  MathSciNet  Google Scholar 

  9. Fejér, L.: Mechanische Quadraturen mit positiven Cotesschen Zahlen. Math. Z. 37, 287–309 (1933)

    Article  MathSciNet  Google Scholar 

  10. Gupta, D.P., Muldoon, M.E.: Inequalities for the smallest zeros of Laguerre polynomials and their q-analogues. JIPA. J. Inequal. Pure Appl. Math. 8(1), 7 (2007). Article 24

    MathSciNet  MATH  Google Scholar 

  11. Ismail, M.E.H.: Classical and quantum orthogonal polynomials in one variable: encyclopedia of mathematics and its applications, vol. 98. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  12. Ismail, M.E.H., Muldoon, M.E.: Bounds for the small real and purely imaginary zeros of Bessel and related functions. Methods Appl. Anal. 2, 1–21 (1995)

    MathSciNet  MATH  Google Scholar 

  13. Rainville, E.D.: Special functions. The Macmillan Company, Basingstoke (1960)

    MATH  Google Scholar 

  14. Riesz, M.: Sur le problème des moments, III. Ark. f. Mat., Astr. och Fys. 17 (16), 1–52 (1923)

    MATH  Google Scholar 

  15. Shohat, J.A.: On mechanical quadratures, in particular, with positive coefficients. Trans. Amer. Math. Soc. 42, 461–496 (1937)

    Article  MathSciNet  Google Scholar 

  16. Szegő, G.: Orthogonal polynomials, 4th edn. American Mathematical Society Colloquium Publications (1975)

  17. Watson, G.N.: A treatise on the theory of Bessel functions, 2nd edn. Cambridge University Press, Cambridge (1944)

Download references

Acknowledgments

The authors thank the referees for helpful comments.

Funding

The research of both authors was funded by the National Research Foundation of South Africa. The authors acknowledge the support of the DST-NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS) under grant number FA2016/008 towards a research visit by Kathy Driver. Opinions expressed and conclusions arrived at in this paper are those of the authors and are not necessarily to be attributed to the CoE-MaSS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Jordaan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Driver, K., Jordaan, K. Zeros of Jacobi polynomials \( P_{n}^{(\alpha ,\beta)} \), − 2 < α, β < − 1. Numer Algor 79, 1075–1085 (2018). https://doi.org/10.1007/s11075-018-0474-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0474-6

Keywords

Mathematics Subject Classification 2010

Navigation