Skip to main content
Log in

A new family of three-stage two-step P-stable multiderivative methods with vanished phase-lag and some of its derivatives for the numerical solution of radial Schrödinger equation and IVPs with oscillating solutions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A new family of three-stage two-step methods are presented in this paper. These methods are of algebraic order 12 and have an important P-stability property. To make these methods, vanishing phase-lag and some of its derivatives have been used. The main structure of these methods are multiderivative, and the combined phases have been applied for expanding stability interval and for achieving P-stability. The advantage of the new methods in comparison with similar methods, in terms of efficiency, accuracy, and stability, has been showed by the implementation of them in some important problems, including the radial time-independent Schrödinger equation during the resonance problems with the use of the Woods-Saxon potential, undamped Duffing equation, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achar, S.D.: Symmetric multistep Obrechkoff methods with zero phase-lag for periodic initial value problems of second order differential equations. Appl. Math. Comput. 218, 2237–2248 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Alolyan, I., Simos, T.E.: A family of high-order multistep methods with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 62, 3756–3774 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alolyan, I., Simos, T.E.: A Runge-Kutta type four-step method with vanished phase-lag and its first and second derivatives for each level for the numerical integration of the Schrödinger equation. J. Math. Chem. 52(3), 917–947 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ning, H., Simos, T.E.: High algebraic order Runge-Kutta type two-step method with vanished phase-lag and its first, second, third, fourth, fifth and sixth derivatives. Comput. Phys. Commun. 196, 226–235 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Simos, T.E.: Multistage symmetric two-step P-stable method with vanished phase-lag and its first, second and third derivatives. Appl. Comput. Math. 14(3), 296–315 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Ibraheem, A., Simos, T.E.: A family of high-order multistep methods with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation. J. Comput. Math. Appl. 62, 3756–3774 (2011)

    Article  MATH  Google Scholar 

  7. Kosti, A.A., Anastassi, Z.A., Simos, T.E.: Construction of an optimized explicit runge-kutta-nyström method for the numerical solution of oscillatory initial value problems. Comput. Math. Appl. 61(11), 3381–3390 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Tsitouras, Ch., Famelis, I.Th., Simos, T.E.: On modified Runge-Kutta trees and methods. Comput. Math. Appl. 62(4), 2101–2111 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Alolyan, I., Anastassi, Z.A., Simos, T.E.: A new family of symmetric linear four-step methods for the efficient integration of the Schrö,dinger equation and related oscillatory problems. Appl. Math. Comput. 218(9), 5370–5382 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Kosti, A.A., Anastassi, Z.A., Simos, T.E.: An optimized explicit Runge-Kutta-Nyström method for the numerical solution of orbital and related periodical initial value problems. Comput. Phys. Commun. 183(3), 470–479 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ananthakrishnaiah, U.A.: P-stable Obrechkoff methods with minimal phase-lag for periodic initial value problems. Math. Comput. 49(180), 553–559 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chawla, M.M., Rao, P.S.: A Numerov-type method with minimal phase-lag for the integration of second order periodic initial value problems. ii: Explicit method. J. Comput. Appl. Math. 15(3), 329–337 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chawla, M.M., Rao, P.S.: An explicit sixth-order method with phase-lag of order eight for y = f(t,y). J. Comput. Appl. Math. 17(3), 365–368 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dahlquist, G.: On accuracy and unconditional stability of linear multistep methods for second order differential equations. BIT 18(2), 133–136 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. Franco, J.M.: An explicit hybrid method of Numerov type for second-order periodic initial-value problems. J. Comput. Appl. Math. 59(1), 79–90 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Franco, J.M., Palacios, M.: High-order P-stable multistep methods. J. Comput. Appl. Math. 30(1), 1–10 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  18. Henrici, P.: Discrete Variable Methods in Ordinary Differential Equations. Wiley, New York (1962)

    MATH  Google Scholar 

  19. Ixaru, L.Gr., Rizea, M.: A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19(1), 23–27 (1980)

    Article  Google Scholar 

  20. Jain, M.K., Jain, R.K., Krishnaiah, U.A.: Obrechkoff methods for periodic initial value problems of second order differential equations. J. Math. Phys. Sci. 15 (3), 239–250 (1981)

    MathSciNet  MATH  Google Scholar 

  21. Lambert, J.D.: Numerical Methods for Ordinary Differential Systems, The Initial Value Problem. Wiley, New York (1991)

    MATH  Google Scholar 

  22. Lambert, J.D., Watson, I.A.: Symmetric multistep methods for periodic initial value problems. J. Inst. Math. Appl. 18(2), 189–202 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liang, M., Simos, T.E.: A new four stages symmetric two-step method with vanished phase-lag and its first derivative for the numerical integration of the Schrö,dinger equation. J. Math. Chem. 54(5), 1187–1211 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mehdizadeh Khalsaraei, M., Molayi, M.: A new class of L-stable hybrid one-step method for the numerical solution of ordinary differential equation. J. Comp. Sci. Appl. Math. 1(2), 3944 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Mehdizadeh Khalsaraei, M., Nasehi Oskuyi, N., Hojjati, G.: A class of second derivative multistep methods for stiff systems. Acta Univ. Apulensis 30, 171188 (2012)

    MATH  Google Scholar 

  26. Mehdizadeh Khalsaraei, M., Molayi, M.: P-stable hybrid super-implicit methods for periodic initial value problems. J. Math. Comput. Sci. 15, 129–136 (2015)

    Article  Google Scholar 

  27. Monovasilis, T., Kalogiratou, Z., Simos, T.E.: Exponentially fitted symplectic runge-kutta-nyström methods. Appl. Math. Inf. Sci. 7(1), 81–85 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Neta, B.: P-stable symmetric super-implicit methods for periodic initial value problems. Comput. Math. Appl. 50(5-6), 701–705 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Panopoulos, G.A., Anastassi, Z.A., Simos, T.E.: A symmetric eight-step predictor-corrector method for the numerical solution of the radial Schrödinger equation and related IVPs with oscillating solutions. Comput. Phys. Commun. 182 (8), 1626–1637 (2011)

    Article  MATH  Google Scholar 

  30. Quinlan, G.D., Tremaine, S.: Symmetric multistep methods for the numerical integration of planetary orbits. Astro. J. 100(5), 1694–1700 (1990)

    Article  Google Scholar 

  31. Ramos, H., Patricio, M.F.: Some new implicit two-step multiderivative methods for solving special second-order IVP’s. Appl. Math. Comput. 239, 227–241 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Ramos, H.: Vigo-aguiar, On the frequency choice in trigonometrically fitted methods. Appl. Math. Lett. 23, 1378–1381 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vigo-Aguiar, J., Ramos, H.: On the choice of the frequency in trigonometrically-fitted methods for periodic problems. J. Comput. Appl. Math. 277, 94–105 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Vigo-Aguiar, J., Martn-Vaquero, J., Ramos, H.: Exponential fitting BDF-Runge-Kutta algorithms. Comput. Phys. Commun. 178(1), 15–34 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Martn-Vaquero, J., Vigo-Aguiar, J.: Exponential fitted Gauss, Radau and Lobatto methods of low order. Numer. Algor. 48(4), 327–346 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Raptis, A.D., Allison, A.C.: Exponential-fitting methods for the numerical solution of the schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)

    Article  Google Scholar 

  37. Raptis, A.D.: Exponentially-fitted solutions of the eigenvalue shrödinger equation with automatic error control. Comput. Phys. Commun. 28, 427–431 (1983)

    Article  Google Scholar 

  38. Sakas, D.P., Simos, T.E.: Multiderivative methods of eighth algebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation. J. Comput. Appl. Math. 175, 161–172 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shokri, A.: A new eight-order symmetric two-step multiderivative method for the numerical solution of second-order IVPs with oscillating solutions. Numer. Algor. 77 (1), 95–109 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shokri, A.: An explicit trigonometrically fitted ten-step method with phase-lag of order infinity for the numerical solution of the radial Schrödinger equation. Appl. Comput. Math. 14(1), 63–74 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Shokri, A., Saadat, H.: P-stability, TF and VSDPL technique in Obrechkoff methods for the numerical solution of the Schrö,dinger equation. Bull. Iranian Math. Soc. 42(3), 687–706 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Shokri, A., Saadat, H.: High phase-lag order trigonometrically fitted two-step Obrechkoff methods for the numerical solution of periodic initial value problems. Numer. Algor. 68, 337–354 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Shokri, A., Shokri, A.A., Mostafavi, Sh., Saadat, H.: Trigonometrically fitted two-step Obrechkoff methods for the numerical solution of periodic initial value problems. Iranian J. Math. Chem. 6(2), 145–161 (2015)

    MATH  Google Scholar 

  44. Simos, T.E.: A P-stable complete in phase Obrechkoff trigonometric fitted method for periodic initial value problems. Proc. R. Soc. 441, 283–289 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  45. Simos, T.E.: Some new variable-step methods with minimal phase-lag for the numerical integration of special second-order initial-value problem. Appl. Math. Comput. 64(1), 55–72 (1994)

    MathSciNet  MATH  Google Scholar 

  46. Simos, T.E., Vigo-Aguiar, J.: A dissipative exponentially-fitted method for the numerical solution of the Schrödinger equation and related problems. J. Comput. Phys. Commun. 152(3), 274–294 (2003)

    Article  MATH  Google Scholar 

  47. Simos, T.E., Vigo-Aguiar, J.: A symmetric high order method with minimal phase-lag for the numerical solution of the Schrödinger equation. Int. J. Modern Phys. C 12(7), 1035–1042 (2001)

    Article  MATH  Google Scholar 

  48. Simos, T.E., Vigo-Aguiar, J.: An exponentially-fitted high order method for long-term integration of periodic initial-value problems. Comput. Phys. Commun. 140(3), 358–365 (2001)

    Article  MATH  Google Scholar 

  49. Simos, T.E., Williams, P.S.: A finite difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79, 189–205 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  50. Stiefel, E., Bettis, D.G.: Stabilization of Cowell’s method. Numer. Math. 13, 154–175 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  51. Thomas, R.M.: Phase properties of high order, almost P-stable formulae. BIT 24(2), 225–238 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  52. Vanden Berghe, G., Van Daele, M.: Trigonometric polynomial or exponential fitting approach. J. Comput. Appl. Math. 233(4), 969–979 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  53. Van Daele, M., Vanden Berghe, G.: Extended one-step methods: an exponential fitting approach. Appl. Numer. Anal. Comput. Math. 1(3), 353–362 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  54. Vanden Berghe, G., Van Daele, M., Vande Vyver, H.: Exponential fitted Runge-Kutta methods of collocation type: fixed or variable knot points. J. Comput. Appl. Math. 159(2), 217–239 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  55. Van Daele, M., Vanden Berghe, G.: P-stable exponentially fitted Obrechkoff methods of arbitrary order for second order differential equations. Numer. Algor. 46, 333–350 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  56. Vanden Berghe, G., Van Daele, M.: Exponentially-fitted Obrechkoff methods for second-order differential equations. Appl. Numer. Math. 59, 815–829 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  57. Vigo-Aguiar, J., Ramos, H.: A variable-step Numerov method for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 255–262 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  58. Vigo-Aguiar, J., Ramos, H., Cavero, C.: A first approach in solving initial-value problems in ODEs by elliptic fitting methods. J. Comput. Appl. Math. 318, 599–603 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  59. Wang, Z., Zhao, D., Dai, Y., Wu, D.: An improved trigonometrically fitted P-stable Obrechkoff method for periodic initial value problems. Proc. R. Soc. 461, 1639–1658 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  60. Wang, Z.: P-stable linear symmetric multistep methods for periodic initial-value problems. Comput. Phys. Commun. 171(3), 162–174 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Professor T. Mitsui for his careful reading the original draft of this article patiently and providing valuable feedback in order to correct it. The authors also express their gratitude to the anonymous referees who read the paper accurately and presented elaborate recommendations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Shokri.

Appendix: Coefficients of the first method (Method NMI)

Appendix: Coefficients of the first method (Method NMI)

$$\begin{array}{@{}rcl@{}} a_{1}&=&{\frac {14}{15}}+ 1/5\,(((276480\,{v}^{4}-19906560 ) \cos (v ) -24\,{v}^{12}-432\,{v}^{10}-1152\,{v}^{ 8}+ 209664\,{v}^{6}\\ &&-345600\,{v}^{4}-19491840\,{v}^{2}+ 59719680 ) (\sin (v ) )^{4}\\ &&+ 42\, (v ) ((-{\frac {12}{7}}\,{v}^{10}-{\frac {920}{7}}\,{v}^{8}+{ \frac {9984}{7}}\,{v}^{6}+{\frac {51840}{7}}\,{v}^{4}\\ &&-{\frac {933120}{ 7}}\,{v}^{2}+{\frac {1589760}{7}} ) \cos (v ) +{v}^{ 12}-{\frac {312}{7}}\,{v}^{10}\\ &&+{\frac {3688}{7}}\,{v}^{8}+ 4992\,{v}^{6 }-{\frac {708480}{7}}\,{v}^{4}+{\frac {2810880}{7}}\,{v}^{2}-{\frac { 3179520}{7}} ) (\sin (v ) )^{3}\\ &&+ ((6\,{v}^{14}-272\,{v}^{12}+ 4032\,{v}^{10}-2880\,{v}^{8} -574272\,{v}^{6}+ 8156160\,{v}^{4}\\ &&-40849920\,{v}^{2}+ 99532800 ) \cos (v ) -396\,{v}^{12}+ 19944\,{v}^{10}-269568\,{v}^{8}\\ &&+ 1744128\,{v}^{6}-9020160\,{v}^{4}+ 61171200\,{v}^{2}-139345920 ) (\sin (v ) )^{2}-36\, (v ) ((-{\frac {232}{3}}\,{v}^{10}\\ &&+{\frac {6400}{3}}\,{v}^{8} -25664\,{v}^{6}+ 147840\,{v}^{4}-472320\,{v}^{2}+ 529920\\ &&+{v}^{12} ) \cos (v ) -529920 + 7/6\,{v}^{12}-60\,{v}^{10}+{ \frac {1652}{3}}\,{v}^{8}+ 6944\,{v}^{6}\\ &&-121920\,{v}^{4}+ 472320\,{v}^{2 } ) \sin (v ) + (-6\,{v}^{14}\\ &&+ 272\,{v}^{12}- 4752\,{v}^{10}+ 27072\,{v}^{8}+ 352512\,{v}^{6}-7948800\,{v}^{4}+ 40642560\,{v}^{2}-79626240 ) \cos (v ) \\ \end{array} $$
$$\begin{array}{@{}rcl@{}} &&+ 168\,{v}^{12 }-6912\,{v}^{10}+ 119808\,{v}^{8}\\ &&-1251072\,{v}^{6}+ 7948800\,{v}^{4}- 40642560\,{v}^{2}+ 79626240 ) {v}^{-6} (((576 \,{v}^{4}-41472 ) \cos (v ) +{v}^{10}\\ &&-12\,{v}^{8}-24 \,{v}^{6}-288\,{v}^{4}-17280\,{v}^{2}+ 124416 ) (\sin (v ) )^{4}- (v ) (({v}^ {8}-60\,{v}^{6}\\ &&+ 360\,{v}^{4}+ 7776\,{v}^{2}-38016 ) \cos (v ) + 6\,{v}^{8}-24\,{v}^{6}+ 1512\,{v}^{4}-28224\,{v}^{2}\\ &&+ 76032 ) (\sin (v ) )^{3}+ ((18\,{v}^{8}-588\,{v}^{6}+ 4464\,{v}^{4}-46656\,{v}^{2}+ 207360 ) \cos (v ) + 600\,{v}^{6}\\&&-5616\,{v}^{4}+ 70848\,{v}^{2}\\ &&- 290304 ) (\sin (v ) )^{2}+ (v ) (({v}^{8}+ 12\,{v}^{6}-2664\,{v}^{4}+ 29376\,{v}^ {2}-76032 ) \cos (v ) -6\,{v}^{8}+ 144\,{v}^{6}\\ &&+ 1800 \,{v}^{4}-29376\,{v}^{2}+ 76032 ) \sin (v ) + (36\,{v}^{8}-504\,{v}^{6}-2304\,{v}^{4}+ 48384\,{v}^{2}-165888 ) \cos (v )\\ && -{v}^{10}+ 12\,{v}^{8}-72\,{v}^{6}+ 2304\,{v}^{4}- 48384\,{v}^{2}+ 165888 )^{-1}\\ &&+ 1/5\, (((192\, {v}^{6}+ 11520\,{v}^{4}-276480 ) \cos (v ) + 6\,{v}^{ 10}-160\,{v}^{8}+ 2208\,{v}^{6}-20160\,{v}^{4}-178560\,{v}^{2}\\ &&+ 552960 ) (\sin (v ) )^{2}-30\, (v ) (({v}^{8}+ 80\,{v}^{4}+ 1824\,{v}^{2}-{\frac {168 }{5}}\,{v}^{6}-2880 ) \cos (v ) + 440\,{v}^{4}\\ &&-2496\, {v}^{2}+ 2880 ) \sin (v ) + (-1392\,{v}^{6}+ 23040\,{v}^{4}-190080\,{v}^{2}+ 552960 ) \cos (v ) \\ &&+ 6 \,{v}^{10}-64\,{v}^{8}-3168\,{v}^{6}+ 14400\,{v}^{4}+ 190080\,{v}^{2}- 552960 ) {v}^{-6} (({v}^{6}-12\,{v}^{4}+ 48\,{v}^{2}\\ && + 576\,\cos (v ) -1152 ) (\sin (v ) )^{2}- (v ) (({v}^{4}-60\,{ v}^{2}+ 432 ) \cos (v ) + 84\,{v}^{2}-432 ) \sin (v )\\ && + (-12\,{v}^{4}+ 144\,{v}^{2}-1152 ) \cos (v ) +{v}^{6}-12\,{v}^{4}-144\,{v}^{2}+ 1152 )^{-1} \end{array} $$
$$\begin{array}{@{}rcl@{}} a_{2}&=&1/30\, ((v ) (-19906560\,{v}^{2} ({v}^ {4}-72 ) (\cos (v ) )^{2}\\ &&+ 576\,{v}^{2 } ({v}^{12}-90\,{v}^{10}+ 1248\,{v}^{8}-2880\,{v}^{6}+ 43200\,{v}^ {4}+ 1503360\,{v}^{2}-12441600 ) \cos (v ) \\ &&+{v}^{20}- 42\,{v}^{18}+ 936\,{v}^{16}-13248\,{v}^{14}+ 123840\,{v}^{12}-203904\,{v }^{10}-12897792\,{v}^{8}\\ &&+ 201553920\,{v}^{6}-2233516032\,{v}^{4}+ 2508226560\,{v}^{2}+ 19349176320 ) (\sin (v ) )^{6}+ (-576\,{v}^{4} ({v}^{10}\\ &&-210\,{v}^{8}+ 6768 \,{v}^{6}-34560\,{v}^{4}-699840\,{v}^{2}+ 3991680 ) (\cos (v ) )^{2}-2\,{v}^{4} ({v}^{16}\\ &&-126\,{v}^{ 14}+ 3888\,{v}^{12}-52416\,{v}^{10}+ 274752\,{v}^{8}-611712\,{v}^{6}- 81699840\,{v}^{4}+ 1420830720\,{v}^{2}\\ &&-4598415360 ) \cos (v ) -6\,{v}^{20}-6\,{v}^{18}+ 3168\,{v}^{16}+ 23472\,{v}^{14}- 2452032\,{v}^{12}+ 41423616\,{v}^{10}\\&&-458307072\,{v}^{8}\\ &&+ 2518677504\,{v }^{6}-507617280\,{v}^{4}-18632540160\,{v}^{2}+ 15049359360 ) (\sin (v ) )^{5}\\&&+ (v ) (({v}^{18}-210\,{v}^{16}\\ &&+ 12600\,{v}^{14}-281664\,{v}^{12}+ 1318464\,{v}^{10}+ 38683008\,{v}^{8}\\ &&-427368960\,{v}^{6}+ 2730682368\,{v}^{4}-16124313600\,{v}^{2}+ 19349176320 ) (\cos (v ) )^{2}\\ &&-6\,{v}^{2} ({v}^{16}+ 87\,{v}^{14}-2892\,{ v}^{12}+ 78360\,{v}^{10}-2782080\,{v}^{8}+ 54086400\,{v}^{6}\\ &&-419800320\, {v}^{4}+ 2118804480\,{v}^{2}-5971968000 ) \cos (v ) + {v}^{20}-42\,{v}^{18}+ 2748\,{v}^{16}-80784\,{v}^{14}\\ &&+ 1310112\,{v}^{12} -22400064\,{v}^{10}\\ &&+ 311071104\,{v}^{8}-2357061120\,{v}^{6}+ 12943494144 \,{v}^{4}-18632540160\,{v}^{2}-42998169600 ) (\sin (v ) )^{4}\\ &&+ ((12\,{v}^{18}+ 528\,{v}^ {16}-78696\,{v}^{14}+ 1943136\,{v}^{12}-28206144\,{v}^{10}+ 481966848\,{ v}^{8}-4885318656\,{v}^{6}\\ &&+ 17886044160\,{v}^{4}-18632540160\,{v}^{2}+ 15049359360 ) (\cos (v ) )^{2}\\ &&+ 252\,{ v}^{4} ({v}^{14}-{\frac {1297}{21}}\,{v}^{12}+{\frac {16066}{7}} \,{v}^{10}-49272\,{v}^{8}+{\frac {4620624}{7}}\,{v}^{6}\\ &&-{\frac { 52156800}{7}}\,{v}^{4}+{\frac {342627840}{7}}\,{v}^{2}-109486080 ) \cos (v ) -12\,{v}^{20}\\ &&+ 528\,{v}^{18}-9072\,{v}^{ 16}-72432\,{v}^{14}+ 5008608\,{v}^{12}\\ &&-90298368\,{v}^{10}+ 1276985088\,{ v}^{8}-7268133888\,{v}^{6}+ 8390615040\,{v}^{4}+ 20782448640\,{v}^{2}\\ &&- 15049359360 ) (\sin (v ) )^{3}- (v ) (({v}^{18}-30\,{v}^{16}-13104\,{v}^{14 }+ 1031472\,{v}^{12}\\ &&-27824256\,{v}^{10}+ 336866688\,{v}^{8}-2049753600\, {v}^{6}+ 7355225088\,{v}^{4}-24007311360\,{v}^{2}\\ &&+ 23648993280 ) (\cos (v ) )^{2}-60\,{v}^{2} ({v}^{16 }-{\frac {661}{10}}\,{v}^{14}\\ \end{array} $$
$$\begin{array}{@{}rcl@{}} &&+ 1398\,{v}^{12}+{\frac {50652}{5}}\,{v}^{ 10}-795312\,{v}^{8}+ 11524032\,{v}^{6}-83441664\,{v}^{4}+ 386684928\,{v}^{2}\\&&-859963392 ) \cos (v ) \\ &&+{v}^{20}-42\,{v}^{18}- 828\,{v}^{16}+ 77616\,{v}^{14}-954144\,{v}^{12}-14482368\,{v}^{10}+ 342921600\,{v}^{8}\\&&-3297894912\,{v}^{6}\\ &&+ 19190172672\,{v}^{4}- 34040217600\,{v}^{2}-23648993280 ) (\sin (v ) )^{2}\\ &&+ 2\,{v}^{2} ((-33\,{v}^{16}+ 3252\,{ v}^{14}-58104\,{v}^{12}-982368\,{v}^{10}+ 40290048\,{v}^{8}-470956032\, {v}^{6}\\ &&+ 2494291968\,{v}^{4}-5255331840\,{v}^{2}+ 1074954240 ) (\cos (v ) )^{2}+{v}^{2} ({v}^{16}- 7716\,{v}^{12}\\ &&+ 266976\,{v}^{10}-1651104\,{v}^{8}-46738944\,{v}^{6}+ 823219200\,{v}^{4}-4807434240\,{v}^{2}\\ &&+ 9196830720 ) \cos (v ) -3\,{v}^{18}+ 267\,{v}^{16}-6120\,{v}^{14}-3672\,{v}^{12}+ 1233792\,{v}^{10}+ 6448896\,{v}^{8}\\&&-352263168\,{v}^{6}\\ &&+ 2313142272\,{v}^{4}-3941498880\,{v}^{2}-1074954240 ) \sin (v ) -{v}^{3} ((648\,{v}^{14}\\ &&-23616\,{v}^{12}+ 245376\,{v}^{10}+ 957312\,{v}^{8}-41928192\,{v}^{6}+ 410323968\,{v}^{4}\\ &&-1791590400\,{v}^{2}+ 5016453120 ) (\cos (v ) )^{2}+ (-66\,{v}^{16}+ 2904\,{v}^{14}\\ &&-41616\,{v}^{12}-108864\,{v}^{10}+ 4555008\,{v}^{8}+ 60549120\,{v}^{6}-1502945280\,{v}^{4}\\ &&+ 10271784960\,{v }^{2}-22932357120 ) \cos (v ) +{v}^{18}-42\,{v}^{16} + 984\,{v}^{14}-21168\,{v}^{12}\\ &&+ 485568\,{v}^{10}-5512320\,{v}^{8}- 18620928\,{v}^{6}+ 1092621312\,{v}^{4}\\ &&-8480194560\,{v}^{2}+ 17915904000 ) ) {v}^{-5} (((576\,{v}^{4}-41472 ) \cos (v ) +{v}^{10}-12\,{v}^{8}\\&&-24\,{v}^{6}-288\, {v}^{4}-17280\,{v}^{2}\\ &&+ 124416 ) (\sin (v ) )^{4}- (v ) (({v}^{8}-60\,{v}^{6}+ 360\,{v}^{4}+ 7776\,{v}^{2}-38016 ) \cos (v ) \\&&+ 6\,{v}^{8}-24\,{v}^{6}+ 1512\,{v}^{4}-28224\,{v}^{2}\\ &&+ 76032 ) (\sin (v ) )^{3}+ ((18\,{v}^{8}-588\,{ v}^{6}+ 4464\,{v}^{4}\\ &&-46656\,{v}^{2}+ 207360 ) \cos (v ) + 600\,{v}^{6}-5616\,{v}^{4}+ 70848\,{v}^{2}\\ &&-290304 ) (\sin (v ) )^{2}+ (v ) (({v}^{8}+ 12\,{v}^{6}-2664\,{v}^{4}+ 29376\,{v}^{2}-76032 ) \cos (v ) \\&&-6\,{v}^{8}+ 144\,{v}^{6}\\ &&+ 1800\,{v}^{4}- 29376\,{v}^{2}+ 76032 ) \sin (v ) + (36\,{v}^{8 }-504\,{v}^{6}-2304\,{v}^{4}\\ &&+ 48384\,{v}^{2}-165888 ) \cos (v ) -{v}^{10}+ 12\,{v}^{8}-72\,{v}^{6}\\ &&+ 2304\,{v}^{4}- 48384\,{v}^{2}+ 165888 )^{-1} (({v}^{6}-12\,{v}^{4} + 48\,{v}^{2}+ 576\,\cos (v ) \\&&-1152 ) (\sin (v ) )^{2}\\ &&- (v ) (({v}^{4}-60\,{v}^{2}+ 432 ) \cos (v ) + 84\,{v}^{2}-432 ) \sin (v ) \\ &&+ (-12\,{v}^{4}+ 144\,{v}^{2}-1152 ) \cos (v ) +{v}^{6}-12\,{v}^{4}-144\,{v}^{2}+ 1152 )^{-1} , \end{array} $$
$$\begin{array}{@{}rcl@{}} a_{3}&=&1/20\, ((v ) (552960\,{v}^{2} ({v}^{2} + 24 ) ({v}^{4}-72 ) (\cos (v ) )^{2}+ 1536\,{v}^{2} ({v}^{12}\\ &&+ 15/2\,{v}^{10}-342\,{v}^{8 }+ 360\,{v}^{6}-23760\,{v}^{4}-246240\,{v}^{2}+ 3110400 ) \cos (v ) +{v}^{20}\\&&-12\,{v}^{18}-344\,{v}^{16}\\ &&+ 5952\,{v}^{14}- 84480\,{v}^{12}+ 711936\,{v}^{10}+ 5280768\,{v}^{8}-91238400\,{v}^{6}+ 1250131968\,{v}^{4}\\&&-1672151040\,{v}^{2}\\ &&-12899450880 ) (\sin (v ) )^{6}+ (-1536\,{v}^{4} ({v}^ {10}-{\frac {45}{2}}\,{v}^{8}-1242\,{v}^{6}+ 16200\,{v}^{4}\\ &&+ 131760\,{v}^{2}-997920 ) (\cos (v ) )^{2}-2\,{v}^{4} ({v}^{16}-36\,{v}^{14}-712\,{v}^{12}+ 33984\,{v}^{10}-200448 \,{v}^{8}\\ &&+ 2135808\,{v}^{6}+ 16588800\,{v}^{4}\\ &&-814510080\,{v}^{2}+ 3065610240 ) \cos (v ) -6\,{v}^{20}+ 24\,{v}^{18}- 3192\,{v}^{16}+ 69792\,{v}^{14}+ 799488\,{v}^{12}\\ &&-18722304\,{v}^{10}+ 215405568\,{v}^{8}-1443557376\,{v}^{6}+ 338411520\,{v}^{4}\\ &&+ 12421693440 \,{v}^{2}-10032906240 ) (\sin (v ) )^ {5}\\ \end{array} $$
$$\begin{array}{@{}rcl@{}} &&+ (v ) (({v}^{18}-60\,{v}^{16}-1080\,{v}^ {14}+ 127296\,{v}^{12}\\ &&-1886976\,{v}^{10}-12379392\,{v}^{8}+ 202798080\,{ v}^{6}-1541763072\,{v}^{4}+ 10749542400\,{v}^{2}\\ &&-12899450880 ) (\cos (v ) )^{2}+ 24\,{v}^{2} ({v}^{16 }-{\frac {253}{6}}\,{v}^{14}+ 243\,{v}^{12}-1900\,{v}^{10}\\ &&-116880\,{v}^ {8}+ 6312960\,{v}^{6}-56246400\,{v}^{4}+ 311662080\,{v}^{2}-995328000 ) \cos (v ) +{v}^{20}\\ &&-12\,{v}^{18}-32\,{v}^{16}+ 29616\,{v}^{14}-406368\,{v}^{12}+ 6967296\,{v}^{10}\\ &&-153052416\,{v}^{8}+ 1294341120\,{v}^{6}-7832733696\,{v}^{4}+ 12421693440\,{v}^{2}+ 28665446400 ) (\sin (v ) )^{4}\\ &&+ ((-18\,{v}^{18}+ 988\,{v}^{16}-2256\,{v}^{14}-382464\,{v}^{12}+ 6086016\,{v}^{10}-214728192\,{v}^{8}+ 2961598464\,{v}^{6}\\ &&- 11924029440\,{v}^{4}+ 12421693440\,{v}^{2}-10032906240 ) (\cos (v ) )^{2}\\ &&+ 72\,{v}^{4} ({v}^{14}-17\,{v }^{12}-{\frac {4166}{3}}\,{v}^{10}+ 66008\,{v}^{8}-933488\,{v}^{6}\\ &&+ 12804480\,{v}^{4}-103150080\,{v}^{2}+ 255467520 ) \cos (v ) -12\,{v}^{20}\\ &&+ 168\,{v}^{18}+ 4128\,{v}^{16}-37632\,{v}^{14}- 1821312\,{v}^{12}+ 30753792\,{v}^{10}\\ &&-624748032\,{v}^{8}+ 4344440832\,{v }^{6}-5593743360\,{v}^{4}-13854965760\,{v}^{2}+ 10032906240 ) (\sin (v ) )^{3}\\ &&- (v ) (({v}^{18}+ 300\,{v}^{16}-12264\,{v}^{14}-133248\,{v}^{12}+ 10917504\,{v}^{10}-169696512\,{v}^{8}+ 1125964800\,{v}^{6}\\ &&-4346099712\, {v}^{4}+ 16004874240\,{v}^{2}-15765995520 ) (\cos (v ) )^{2}-60\,{v}^{2} ({v}^{16}\\ &&-{\frac {103}{5}}\,{ v}^{14}-502\,{v}^{12}+{\frac {32952}{5}}\,{v}^{10}+ 267552\,{v}^{8}- 5622912\,{v}^{6}+ 45508608\,{v}^{4}-233902080\,{v}^{2}\\ &&+ 573308928 ) \cos (v ) +{v}^{20}-12\,{v}^{18}-848\,{v}^{16}- 14064\,{v}^{14}+ 853536\,{v}^{12}+ 2080512\,{v}^{10}\\ &&-163226880\,{v}^{8}+ 1831984128\,{v}^{6}-11917559808\,{v}^{4}+ 22693478400\,{v}^{2}+ 15765995520 ) (\sin (v ) )^{2}\\ &&+ 2\,{v}^{2} ((-18\,{v}^{16}+ 52\,{v}^{14}+ 29616\,{v}^{12}+ 55872\, {v}^{10}-16630272\,{v}^{8}+ 250933248\,{v}^{6}-1530150912\,{v}^{4}\\ &&+ 3503554560\,{v}^{2}-716636160 ) (\cos (v ) )^{2}+{v}^{2} ({v}^{16}-976\,{v}^{12}-83904\,{v}^{10}\\ &&+ 1607616\,{v}^{8}+ 12220416\,{v}^{6}-419420160\,{v}^{4}\\ &&+ 2939535360\,{v}^{2}-6131220480 ) \cos (v ) -3\,{v}^{18}+ 72\,{v}^{16} + 3660\,{v}^{14}-53712\,{v}^{12}\\ &&-730368\,{v}^{10}+ 4409856\,{v}^{8}+ 168486912\,{v}^{6}-1409384448\,{v}^{4}+ 2627665920\,{v}^{2}\\ &&+ 716636160 ) \sin (v ) -{v}^{3} ((288\,{v}^{14}- 2976\,{v}^{12}-19584\,{v}^{10}-85248\,{v}^{8}\\ &&+ 8598528\,{v}^{6}- 140838912\,{v}^{4}+ 875888640\,{v}^{2}\\ &&-3344302080 ) (\cos (v ) )^{2}+ (-36\,{v}^{16}+ 104\,{v}^{14}+ 23904\,{v}^{12}-157824\,{v}^{10}-3036672\,{v}^{8}\\ &&-8294400\,{v}^{6}+ 736542720\,{v}^{4}-6210846720\,{v}^{2}+ 15288238080 ) \cos (v ) +{v}^{18}\\ &&-12\,{v}^{16}-536\,{v}^{14}+ 13632\,{v}^{12} -237312\,{v}^{10}+ 3121920\,{v}^{8}\\ &&-304128\,{v}^{6}-595703808\,{v}^{4}+ 5334958080\,{v}^{2}-11943936000 ) ) {v}^{-5} (((576\,{v}^{4}-41472 ) \cos (v )\\ && +{v}^{10}-12\,{v}^{8}-24\,{v}^{6}-288\,{v}^{4}-17280\,{v}^{2}+ 124416 ) (\sin (v ) )^{4}- (v ) (({v}^{8}\\ &&-60\,{v}^{6}+ 360\,{v}^{4}+ 7776\,{v}^{2 }-38016 ) \cos (v ) + 6\,{v}^{8}-24\,{v}^{6}+ 1512\,{v }^{4}-28224\,{v}^{2}\\ &&+ 76032 ) (\sin (v ) )^{3}+ ((18\,{v}^{8}-588\,{v}^{6}+ 4464\,{v}^{4}- 46656\,{v}^{2}+ 207360 ) \cos (v ) \\ &&+ 600\,{v}^{6}-5616 \,{v}^{4}+ 70848\,{v}^{2}-290304 ) (\sin (v ) )^{2}+ (v ) (({v}^{8}\\ &&+ 12\,{v}^{6}- 2664\,{v}^{4}+ 29376\,{v}^{2}-76032 ) \cos (v ) -6\,{ v}^{8}+ 144\,{v}^{6}+ 1800\,{v}^{4}-29376\,{v}^{2}\\&&+ 76032 ) \sin (v ) + (36\,{v}^{8}\\ &&-504\,{v}^{6}-2304\,{v}^{4}+ 48384\,{v}^{2}-165888 ) \cos (v ) -{v}^{10}+ 12\,{v}^ {8}-72\,{v}^{6}+ 2304\,{v}^{4}-48384\,{v}^{2}\\ &&+ 165888 )^{-1} (({v}^{6}-12\,{v}^{4}+ 48\,{v}^{2}+ 576\,\cos (v ) -1152 ) (\sin (v ) )^{2} - (v ) (({v}^{4}-60\,{v}^{2}+ 432 ) \cos (v ) + 84\,{v}^{2}\\ &&-432 ) \sin (v ) + (-12\,{v}^{4}+ 144\,{v}^{2}-1152 ) \cos (v ) + {v}^{6}-12\,{v}^{4}-144\,{v}^{2}+ 1152 )^{-1} , \end{array} $$
$$\begin{array}{@{}rcl@{}} a_{4}&=&{\frac {1}{240}}\, (((138240\,{v}^{4}-9953280 ) \cos (v ) -12\,{v}^{12}-216\,{v}^{10}\\ &&-576\,{v}^{8 }+ 104832\,{v}^{6}-172800\,{v}^{4}-9745920\,{v}^{2}+ 29859840 ) (\sin (v ) )^{4}+ 21\, (v ) ((-{\frac {12}{7}}\,{v}^{10}\\ \end{array} $$
$$\begin{array}{@{}rcl@{}} &&-{\frac {920}{7}}\,{v}^{8}+{ \frac {9984}{7}}\,{v}^{6}+{\frac {51840}{7}}\,{v}^{4}-{\frac {933120}{ 7}}\,{v}^{2}+{\frac {1589760}{7}} ) \cos (v )\\ && +{v}^{12}-{\frac {312}{7}}\,{v}^{10}+{\frac {3688}{7}}\,{v}^{8}+ 4992\,{v}^{6 }-{\frac {708480}{7}}\,{v}^{4}+{\frac {2810880}{7}}\,{v}^{2}\\ &&-{\frac { 3179520}{7}} ) (\sin (v ) )^{3}+ ((3\,{v}^{14}-136\,{v}^{12}+ 2016\,{v}^{10}-1440\,{v}^{8} -287136\,{v}^{6}+ 4078080\,{v}^{4}\\ &&-20424960\,{v}^{2}+ 49766400 ) \cos (v ) -198\,{v}^{12}+ 9972\,{v}^{10}-134784\,{v}^{8}+ 872064\,{v}^{6}\\ &&-4510080\,{v}^{4}+ 30585600\,{v}^{2}-69672960 ) (\sin (v ) )^{2}-18\, (v ) ((-{\frac {232}{3}}\,{v}^{10}\\ &&+{\frac {6400}{3}}\,{v}^{8} -25664\,{v}^{6}+ 147840\,{v}^{4}-472320\,{v}^{2}+ 529920+{v}^{12} ) \cos (v ) -529920 + 7/6\,{v}^{12}\\ &&-60\,{v}^{10}+{ \frac {1652}{3}}\,{v}^{8}+ 6944\,{v}^{6}-121920\,{v}^{4}+ 472320\,{v}^{2 } ) \sin (v ) + (-3\,{v}^{14}\\ &&+ 136\,{v}^{12}- 2376\,{v}^{10}+ 13536\,{v}^{8}+ 176256\,{v}^{6}-3974400\,{v}^{4}\\ &&+ 20321280\,{v}^{2}-39813120 ) \cos (v )+ 84\,{v}^{12} -3456\,{v}^{10}+ 59904\,{v}^{8}-625536\,{v}^{6}\\ &&+ 3974400\,{v}^{4}- 20321280\,{v}^{2}+ 39813120 ) {v}^{-6} (((576 \,{v}^{4}-41472 ) \cos (v ) \\ &&+{v}^{10}-12\,{v}^{8}-24 \,{v}^{6}-288\,{v}^{4}-17280\,{v}^{2}+ 124416 ) (\sin (v ) )^{4}- (v ) (({v}^ {8}-60\,{v}^{6}+ 360\,{v}^{4}\\ &&+ 7776\,{v}^{2}-38016 ) \cos (v ) + 6\,{v}^{8}-24\,{v}^{6}+ 1512\,{v}^{4}\\ &&-28224\,{v}^{2}+ 76032 ) (\sin (v ) )^{3}+ ((18\,{v}^{8}-588\,{v}^{6}+ 4464\,{v}^{4}-46656\,{v}^{2}\\ &&+ 207360 ) \cos (v ) + 600\,{v}^{6}-5616\,{v}^{4}+ 70848\,{v}^{2}- 290304 ) (\sin (v ) )^{2}\\ &&+ (v ) (({v}^{8}+ 12\,{v}^{6}-2664\,{v}^{4}+ 29376\,{v}^ {2}-76032 ) \cos (v ) -6\,{v}^{8}\\ &&+ 144\,{v}^{6}+ 1800 \,{v}^{4}-29376\,{v}^{2}+ 76032 ) \sin (v ) + (36\,{v}^{8}-504\,{v}^{6}-2304\,{v}^{4}+ 48384\,{v}^{2}\\ &&-165888 ) \cos (v ) -{v}^{10}+ 12\,{v}^{8}-72\,{v}^{6}+ 2304\,{v}^{4}- 48384\,{v}^{2}+ 165888 )^{-1} , \end{array} $$
$$\begin{array}{@{}rcl@{}} a_{5}&=&{\frac {1}{60}}\, (((96\,{v}^{6}+ 5760\,{v}^{4}- 138240 ) \cos (v ) + 3\,{v}^{10}-80\,{v}^{8}+ 1104\,{v }^{6}-10080\,{v}^{4}-89280\,{v}^{2}\\ &&+ 276480 ) (\sin (v ) )^{2}-15\, (v ) (({v}^{8}+ 80\,{v}^{4}+ 1824\,{v}^{2}\\ &&-{\frac {168}{5}}\,{v}^{6}-2880 ) \cos (v ) + 440\,{v}^{4}-2496\,{v}^{2}+ 2880 ) \sin (v ) + (-696\,{v}^{6}\\ &&+ 11520\,{v}^{4}- 95040\,{v}^{2}+ 276480 ) \cos (v ) + 3\,{v}^{10}-32\,{ v}^{8}-1584\,{v}^{6}+ 7200\,{v}^{4}+ 95040\,{v}^{2}\\ &&-276480 ) (({v}^{6}-12\,{v}^{4}+ 48\,{v}^{2}+ 576\,\cos (v ) -1152 ) (\sin (v ) )^{2}\\ &&- (v ) (({v}^{4}-60\,{v}^{2}+ 432 ) \cos (v ) + 84\,{v}^{2}-432 ) \sin (v )\\ && + (-12\,{v}^{4}+ 144\,{v}^{2}-1152 ) \cos (v ) + {v}^{6}-12\,{v}^{4}-144\,{v}^{2}+ 1152 )^{-1}{v}^{-6} , \end{array} $$
$$\begin{array}{@{}rcl@{}} a_{6}&=&{\frac {1}{240}}\, (((-39813120\,{v}^{4}+ 2866544640 ) \cos (v ) + 4608\,{v}^{12}-884736\,{v}^{ 8}\\ &&-23224320\,{v}^{6}+ 238878720\,{v}^{4}+ 2627665920\,{v}^{2}- 17199267840 ) (\sin (v ) )^{8}+ 32\, (v ) ((720\,{v}^{10}\\ &&+ 43200\,{v}^{8}-570240 \,{v}^{6}-2177280\,{v}^{4}+ 44789760\,{v}^{2}-82114560 ) \cos (v )\\ && +{v}^{16}+{\frac {135}{2}}\,{v}^{14}-1512\,{v}^{12}+ 9396\,{v}^{10}-196992\,{v}^{8}+ 233280\,{v}^{6}\\ &&+ 36495360\,{v}^{4}- 264384000\,{v}^{2}+ 410572800 ) (\sin (v ) )^{7}+ ((-8\,{v}^{18}-64\,{v}^{16}+ 2424\,{v}^{14} \\ &&+ 219456\,{v}^{12}-3294144\,{v}^{10}-9234432\,{v}^{8}+ 228925440\,{v}^{6 }-1388482560\,{v}^{4}+ 13974405120\,{v}^{2}\\ &&-54464348160 ) \cos (v ) -3\,{v}^{20}+ 157\,{v}^{18}-3308\,{v}^{16}+ 42432\,{v}^{14}-639360\,{v}^{12}-3669120\,{v}^{10}\\&&+ 196584192\,{v}^{8}\\ \end{array} $$
$$\begin{array}{@{}rcl@{}} &&-1534464000 \,{v}^{6}+ 6484561920\,{v}^{4}-40609382400\,{v}^{2}+ 126127964160 ) (\sin (v ) )^{6}\\ &&+ 12\, (({v}^{18}-76\,{v}^{16}+ 1976\,{v}^{14}-13244\,{v}^{12}-164616\,{ v}^{10}+ 2408256\,{v}^{8}\\ &&-31576320\,{v}^{6}+ 396956160\,{v}^{4}- 1990656000\,{v}^{2}+ 2846638080 ) \cos (v ) + 95915520 \,{v}^{6}\\&&+ 3/2\,{v}^{18}-900357120\,{v}^{4}\\ &&-{\frac {469}{6}}\,{v}^{16}+ 3982970880\,{v}^{2}+ 2171\,{v}^{14}-5474304000-62280\,{v}^{12}+ 1084728 \,{v}^{10}\\&&-9859104\,{v}^{8} ) (v ) (\sin (v ) )^{5}\\ &&+ ((-116\,{v}^{18}+ 7412\,{ v}^{16}-158856\,{v}^{14}+ 2171232\,{v}^{12}-41693760\,{v}^{10}+ 542688768\,{v}^{8}\\&&-3327713280\,{v}^{6}\\ &&+ 14875176960\,{v}^{4}- 74769039360\,{v}^{2}+ 189191946240 ) \cos (v ) + 3\,{v }^{20}-166\,{v}^{18}\\&&+ 2152\,{v}^{16}+ 54816\,{v}^{14}\\ &&-2298528\,{v}^{12}+ 61729920\,{v}^{10}-815885568\,{v}^{8}+ 5315051520\,{v}^{6}-25455513600 \,{v}^{4}\\&&+ 123978055680\,{v}^{2}\\ &&-292387553280 ) (\sin (v ) )^{4}-6\, (v ) ((- 2401296\,{v}^{10}+ 27104832\,{v}^{8}-301870080\,{v}^{6}\\&&+{v}^{18}+ 2421135360\,{v}^{4}\\ &&-{\frac {232}{3}}\,{v}^{16}-9382625280\,{v}^{2}- 1012\,{v}^{14}+ 12262440960 + 121552\,{v}^{12} ) \cos (v ) \\&&-1778\,{v}^{14}-3236198400\,{v}^{4}\\ &&+{\frac {277}{3}}\,{v}^{16 }+ 12209356800\,{v}^{2}+ 2473584\,{v}^{10}-15765995520-71456\,{v}^{12}+ 410664960\,{v}^{6}\\&&-35445312\,{v}^{8} ) (\sin (v ) )^{3}\\ &&+ ((-100\,{v}^{18}+ 6404\,{v}^{16}- 104592\,{v}^{14}-1049184\,{v}^{12}+ 52842240\,{v}^{10}-645954048\,{v}^{ 8}\\ &&+ 4191989760\,{v}^{6}-23589273600\,{v}^{4}+ 110839726080\,{v}^{2}- 229323571200 ) \cos (v )\\ && + 3\,{v}^{20}-139\,{v}^{18}+ 3844\,{v}^{16}-127296\,{v}^{14}+ 3260448\,{v}^{12}\\ &&-62138880\,{v}^{10}+ 671721984\,{v}^{8}-4626616320\,{v}^{6}+ 28446474240\,{v}^{4}- 135683112960\,{v}^{2}\\ &&+ 275188285440 ) (\sin (v ) )^{2}-6\, ((841536\,{v}^{10}-14676480\,{ v}^{8}+ 217589760\,{v}^{6}+{v}^{18}\\&&-1630126080\,{v}^{4}\\ &&-{\frac {320}{3} }\,{v}^{16}+ 5653463040\,{v}^{2}+ 4176\,{v}^{14}-7007109120-72752\,{v}^{ 12} ) \cos (v ) \\&&-217589760\,{v}^{6}+ 3\,{v}^{18}\\ &&+ 1630126080\,{v}^{4}-{\frac {730}{3}}\,{v}^{16}-5653463040\,{v}^{2}+ 6480\,{v}^{14}+ 7007109120-61168\,{v}^{12}\\&&-254016\,{v}^{10}\\ &&+ 14676480\,{ v}^{8} ) (v ) \sin (v ) + (116\,{ v}^{18}-5520\,{v}^{16}+ 73632\,{v}^{14}-87552\,{v}^{12}-4078080\,{v}^{ 10}\\ &&+ 51535872\,{v}^{8}-869253120\,{v}^{6}+ 9714401280\,{v}^{4}\\ &&- 49686773760\,{v}^{2}+ 91729428480 ) \cos (v ) -3\,{v} ^{20}+ 148\,{v}^{18}-2688\,{v}^{16}+ 30048\,{v}^{14}\\ &&-327168\,{v}^{12}+ 4078080\,{v}^{10}-51535872\,{v}^{8}+ 869253120\,{v}^{6}-9714401280\,{v} ^{4}+ 49686773760\,{v}^{2}\\ &&-91729428480 ) {v}^{-8} (((-331776\,{v}^{4}+ 23887872 ) \cos (v ) -1152 \,{v}^{10}+ 13824\,{v}^{8}+ 27648\,{v}^{6}\\ &&+ 331776\,{v}^{4}+ 11943936\,{v}^{2}-119439360 ) (\sin (v ) )^{8}+ 2\, ((576\,{v}^{8}-34560\,{v}^{6}+ 207360\,{v}^{4}\\ &&+ 3483648\,{ v}^{2}-19906560 ) \cos (v ) +{v}^{14}-72\,{v}^{12}+ 1128\,{v}^{10}-576\,{v}^{8}-10368\,{v}^{6}+ 1036800\,{v}^{4}\\ &&-2092032\,{v}^{4}+ 20832768\,{v}^{2}-59719680 ) \cos (v ) -784\,{v}^{10 }+ 1/3\,{v}^{14}+ 28368\,{v}^{8}\\&&-355968\,{v}^{6}+ 4713984\,{v}^{4}\\ &&- 40559616\,{v}^{2}+ 106168320 ) (v ) (\sin (v ) )^{5}+ (({v}^{16}-22\,{v}^{14}+ 1128\,{v}^{12}-22752\,{v}^{10}+ 576576\,{v}^{8}\\ &&-9963648\,{v}^{6}+ 73571328\,{v}^{4}-359811072\,{v}^{2}+ 979402752 ) \cos (v ) -48\,{v}^{14}+ 1512\,{v}^{12}\\&&-5040\,{v}^{10}-695808\,{v}^{8}\\ \end{array} $$
$$\begin{array}{@{}rcl@{}} &&+ 14449536\,{v}^{6}-113052672\,{v}^{4}+ 561862656\,{v}^{2}-1457160192 ) (\sin (v ) )^{4}-12\, (v ) ((251\,{v}^{10}\\&&+ 6120\,{v}^{8}-181440\,{v}^{6}\\ &&+ 3131136\,{v}^{4}-22961664\,{v}^{2}+{v}^{14}+ 53084160\\ &&-{\frac {59}{2}}\, {v}^{12} ) \cos (v ) + 29431296\,{v}^{2}+ 1/6\,{v}^{14 }-66355200-12\,{v}^{12}-32\,{v}^{10}-4872\,{v}^{8}\\ &&+ 226944\,{v}^{6}- 4078080\,{v}^{4} ) (\sin (v ) )^{3}+ ((-{v}^{16}+ 23\,{v}^{14}+ 1104\,{v}^{12}-21240\,{v}^{10}\\ &&- 376704\,{v}^{8}+ 9455616\,{v}^{6}-83773440\,{v}^{4}+ 443916288\,{v}^{2}- 1051066368 ) \cos (v ) \\ &&+ 12\,{v}^{14}-1104\,{v}^{12}+ 13176\,{v}^{10}+ 342144\,{v}^{8}-9455616\,{v}^{6}+ 93394944\,{v}^{4}- 523542528\,{v}^{2}\\ &&+ 1242169344 ) (\sin (v ) )^{2}-6\, (({v}^{14}-42\,{v}^{12}-360\,{v}^{10}+ 13056\,{v}^{8}+ 101376\,{v}^{6}\\ &&-3787776\,{v}^{4}+ 25878528\,{v}^{2}- 53084160 ) \cos (v ) + 1224\,{v}^{10}-1/3\,{v}^{14}\\ &&- 18816\,{v}^{8}-101376\,{v}^{6}+ 3787776\,{v}^{4}-25878528\,{v}^{2}+ 53084160 ) (v ) \sin (v ) \\ &&+ (-{v} ^{16}+ 24\,{v}^{14}-504\,{v}^{12}+ 11520\,{v}^{10}-138240\,{v}^{8}\\ &&+ 19243008\,{v}^{4}-159252480\,{v}^{2}+ 382205952 ) \cos (v ) + 48\,{v}^{14}-1224\,{v}^{12}+ 2304\,{v}^{10}\\ &&+ 138240\,{v}^{8}- 19243008\,{v}^{4}+ 159252480\,{v}^{2}-382205952 )^{-1} . \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shokri, A., Khalsaraei, M.M., Tahmourasi, M. et al. A new family of three-stage two-step P-stable multiderivative methods with vanished phase-lag and some of its derivatives for the numerical solution of radial Schrödinger equation and IVPs with oscillating solutions. Numer Algor 80, 557–593 (2019). https://doi.org/10.1007/s11075-018-0497-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0497-z

Keywords

Navigation