Skip to main content
Log in

Sparse matrix computation for air quality forecast data assimilation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we study the ensemble Kalman filter (EnKF) method for chemical species simulation in air quality forecast data assimilation. The main contribution of this paper is that we study the sparse observation data and make use of the matrix structure of the EnKF update equations to design an algorithm for the purpose of computing the analysis of chemical species in an air quality forecast system efficiently. The proposed method can also handle the combined observations from multiple chemical species together. We applied the proposed method and tested its performance in real air quality data assimilation. Numerical examples are presented to demonstrate the efficiency of the proposed computation method for EnKF updating and the effectiveness of the proposed method for NO2, NO, CO, SO2, O3, PM2.5, and PM10 prediction in air quality forecast data assimilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stockwell, W.R., Middleton, P., Chang, J.S., Tang, X.: The second generation regional acid deposition model chemical mechanism for regional air quality modeling. J. Geophys. Res. Atmos. 95, 16343–16367 (1990)

    Article  Google Scholar 

  2. Nenes, A., Pandis, S.N., Pilinis, C.: Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models. Atmos. Environ. 33, 1553–1560 (1999)

    Article  Google Scholar 

  3. Binkowski, F.S., Roselle, S.J.: Models–3 community multiscale air quality (CMAQ) model aerosol component 1. Model description. J. Geophys. Res. Atmos., 108, D64183 (2003)

  4. Eder, B., Kang, D., Mathur, R., Yu, S., Schere, K.: An operational evaluation of the Eta-CMAQ air quality forecast model. Atmos. Environ. 40, 4894–4905 (2006)

    Article  Google Scholar 

  5. Tang, Y., Carmichael, G.R., Thongboonchoo, N., Chai, T., Horowitz, L.W., Pierce, R.B., Sachse, G.W.: Influence of lateral and top boundary conditions on regional air quality prediction: a multiscale study coupling regional and global chemical transport models. J. Geophys. Res. Atmos., 112, D10S18 (2007)

  6. Brasseur, G.P., Hauglustaine, D.A., Walters, S., Rasch, P.J., Müller, J.F., Granier, C., Tie, X.X.: MOZART, a global chemical transport model for ozone and related chemical tracers: 1. Model description. J. Geophys. Res. Atmos. 103, 28265–28289 (1998)

    Article  Google Scholar 

  7. Carmichael, G.R., Sandu, A., Chai, T., Daescu, D.N., Constantinescu, E.M., Tang, Y.: Predicting air quality: improvements through advanced methods to integrate models and measurements. J. Comput. Phys. 227, 3540–3571 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sandu, A., Daescu, D.N., Carmichael, G.R., Chai, T.: Adjoint sensitivity analysis of regional air quality models. J. Comput. Phys. 204, 222–252 (2005)

    Article  MATH  Google Scholar 

  9. Chai, T., Carmichael, G.R., Sandu, A., Tang, Y., Daescu, D.N.: Chemical data assimilation of transport and chemical evolution over the pacific (TRACE-P) aircraft measurements. J. Geophys. Res. Atmos., 111, D02301 (2006)

  10. Constantinescu, E.M., Chai, T., Sandu, A., Carmichael, G.R.: Autoregressive models of background errors for chemical data assimilation. J. Geophys. Res. Atmos., 112, D12309 (2007)

  11. Fisher, M., Lary, D.J.: Lagrangian four-dimensional variational data assimilation of chemical species. Q. J. R. Meteorol. Soc. 121, 1681–1704 (1995)

    Article  Google Scholar 

  12. Elbern, H., Schmidt, H., Talagrand, O., Ebel, A: 4D-variational data assimilation with an adjoint air quality model for emission analysis. Environ. Model. Softw. 15, 539–548 (2000)

    Article  Google Scholar 

  13. Errera, Q., Fonteyn, D.: Four-dimensional variational chemical assimilation of CRISTA stratospheric measurements. J. Geophys. Res. 106, 12253 (2001)

    Article  Google Scholar 

  14. Houtekamer, P.L., Mitchell, H.L.: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Weather Rev. 129, 123–137 (2001)

    Article  Google Scholar 

  15. Sandu, A., Constantinescu, E., Carmichael, G., Chai, T., Daescu, D., Seinfeld, J.: Ensemble methods for dynamic data assimilation of chemical observations in atmospheric models. J. Algorithms Comput. Technol., 5, 667–692 (2011)

  16. Ott, E., Hunt, B.R., Szunyogh, I., Zimin, A.V.A., Kostelich, E.J., Corazza, M., Kalnay, E., Patil, D.J., Yorke, J.a.: A local ensemble Kalman filter for atmospheric data assimilation. Tellus A. 56, 66 (2002)

    Google Scholar 

  17. Le Dimet, F.X., Talagrand, O.: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus A. 38, 97–110 (1986)

    Article  Google Scholar 

  18. Courtier, P., Talagrand, O.: Variational assimilation of meteorological observations with the adjoint vorticity equation. II: Numerical results. Q. J. R. Meteorol. Soc. 113, 1329–1347 (1987)

    Article  Google Scholar 

  19. Daley, R.: Generation of global multivariate error covariances by singular-value decomposition of the linear balance equation. Mon. Weather Rev. 124, 2574–2587 (1996)

    Article  Google Scholar 

  20. Houtekamer, P.L., Zhang, F., Houtekamer, P.L., Zhang, F.: Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Weather. Rev. MWR-D-15-0440.1 (2016)

  21. Campbell, W.F., Bishop, C.H., Hodyss, D.: Vertical covariance localization for satellite radiances in ensemble Kalman filters. Mon. Weather Rev. 138, 282–290 (2010)

    Article  Google Scholar 

  22. Lei, L., Whitaker, J.S.: Model space localization is not always better than observation space localization for assimilation of satellite radiances. Mon. Weather Rev. 143, 3948–3955 (2015)

    Article  Google Scholar 

  23. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35 (1960)

    Article  Google Scholar 

  24. Ghil, M., Malanotte-Rizzoli, P.: Data assimilation in meteorology and oceanography. Adv. Geophys. 33, 141–266 (1991)

    Article  Google Scholar 

  25. Gillijns, S., Mendoza, O.B., Chandrasekar, J., De Moor, B.L.R., Bernstein, D.S., Ridley, A.: What is the ensemble Kalman filter and how well does it work? In: American Control Conference, p. 6. IEEE. (2006)

  26. Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo mthods to forecast error statistics. J. Geophys. Res. 99, 10143–10162 (1994)

    Article  Google Scholar 

  27. Evensen, G.: The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn. 53, 343–367 (2003)

    Article  Google Scholar 

  28. Bishop, C.H., Etherton, B.J., Majumdar, S.J.: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Weather Rev. 129, 420–436 (2001)

    Article  Google Scholar 

  29. Gaspari, G., Gaspari, G., Cohn, S.E., Cohn, S.E.: Construction of correlation functions in two and three dimensions. Q. J. R. Meteorol. Soc. 125, 723–757 (1999)

    Article  Google Scholar 

  30. Hamill, T.M., Whitaker, J.S., Snyder, C.: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Weather Rev. 129, 2776–2790 (2001)

    Article  Google Scholar 

  31. Constantinescu, E.M., Sandu, A., Chai, T., Carmichael, G.R.: Ensemble-based chemical data assimilation. II: Covariance localization. Q. J. R. Meteorol. Soc. 133, 1245–1256 (2007)

    Article  Google Scholar 

  32. Byun, D.W., Ching, J.K.S.: Science algorithms of the EPA Models-3 community multiscale air quality (CMAQ) modeling system. US Environ. Prot. Agency, Off. Res. Dev. Washington, DC, USA. 44, 1765–1778 (1999)

    Google Scholar 

Download references

Acknowledgments

Research supported in part by HKBU RC-ICRS/16-17/03-MATH and HKRGC GRF 12306616 and 12200317.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaochen Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, M.K., Zhu, Z. Sparse matrix computation for air quality forecast data assimilation. Numer Algor 80, 687–707 (2019). https://doi.org/10.1007/s11075-018-0502-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0502-6

Keywords

Navigation