Skip to main content
Log in

Galerkin approach for estimating boundary data in Poisson equation on annular domain with application to heat transfer coefficient estimation in coiled tubes

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We investigate the problem of reconstructing internal Neumann data for a Poisson equation on annular domain from discrete measured data at the external boundary. By applying a Galerkin’s collocation method to the direct problem, the reconstruction problem is formulated as a linear system and boundary data are determined through a singular value decomposition (SVD)-based scheme. The SVD of the coefficient matrix is explicitly determined, and thus regularization methods such as truncated singular value decomposition (TSVD) and Tikhonov regularization (TR) are readily implemented. Numerical examples using both synthetic and experimental data are presented to illustrate the efficiency of the method, including an application to the experimental estimation of heat transfer coefficients in coiled tubes; the regularization parameter for TSVD and TR is determined by the discrepancy principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bazán, F.S.V., Bedin, L., Bozzoli, F.: Numerical estimation of convective heat transfer coefficient through linearization. Int. J. Heat Mass Transf. 2, 1230–1244 (2016)

    Article  Google Scholar 

  2. Bazán, F.S.V., Bedin, L.: Identification of heat transfer coefficient through linearization: explicit solution and approximation. Inverse Probl. 25 33, 124006 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Viloche Bazán, F.S.: Simple and efficient determination of the Tikhonov regularization parameter chosen by the generalized discrepancy principle for discrete ill-posed problems. J. Sci. Comput. 63(1), 163–184 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bazán, F.S.V.: Fixed-point iterations in determining the Tikhonov regularization parameter. Inverse Probl. 24, 1–15 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bazán, F.S.V., Francisco, J.B.: An improved fixed-point algorithm for determining a Tikhonov regularization parameter. Inverse Probl. 25, 045007 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beck, J.V., Blackwell, B. Jr, Clair, Ch.R.: Inverse Heat Conduction - Ill-Posed Problems. Wiley, New York (1985)

    MATH  Google Scholar 

  7. Bernston, F., Eldén, L.: Numerical solution of a Cauchy problem for the Laplace equation. Inverse Probl. 17(4), 839–853 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bozzoli, F., Cattani, L., Rainieri, S., Bazán, F.S.V., Borges, L.S.: Estimation of the local heat-transfer coefficient in the laminar flow regime in coiled tubes by Tikhonov regularisation method. Int. J. Heat Mass Transf. 72, 352–361 (2014)

    Article  Google Scholar 

  9. Cao, H., Pereverzev, S.V., Sincich, E.: Natural linearization for corrosion identification. J. Phys. Conf. Ser. 135, 012027 (2008)

    Article  Google Scholar 

  10. Cao, H., Pereverzev, S.V.: Balancing principle for the regularization of elliptic Cauchy problems. Inverse Prob. 23, 1943–1961 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Canuto, C., Hussaini, M.Y., Quarteroni, A.A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer-Verlag, Berlin (1988)

    Book  MATH  Google Scholar 

  12. Chen, H.T., Wu, X.Y.: Estimation of heat transfer coefficient in two-dimensional inverse heat conduction problems. Numer. Heat Transfer Part B 50, 375–394 (2006)

    Article  Google Scholar 

  13. Colaço, M. J., Alves, C.J., Bozzoli, F.: The reciprocity function approach applied to the non-intrusive estimation of spatially varying internal heat transfer coefficients in ducts: numerical and experimental results. Int. J. Heat Mass Transfer. 90, 1221–1231 (2015)

    Article  Google Scholar 

  14. Engel, H.W., Hanke, M., Neubauer, A: Regularization of Inverse Problems. Kluwer Academic Publishers (2000)

  15. Fasino, D., Inglese, G.: An inverse Robin problem for Laplace’s equation: theoretical results and numerical methods. Inverse Probl., 41–48 (1999)

  16. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1988)

    Google Scholar 

  17. Heng, Y., Mhamdi, A., Lu, Sh., Pereverzev, S.: Model functions in the modified L-curve method-case study: the heat flux reconstruction in pool boiling. Inverse Probl. 26(5) (2010)

  18. Hong, Y.G., Wei, T.: Backus-Gilbert algorithm for the Cauchy problem of the Laplace equation. Inverse Probl. 17, 261–271 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jaoua, M., Leblond, J., Mahjoub, M., Partington, J.R.: Robust numerical algorithms based on analytic approximation for the solution of inverse problems in annular domains. IMA. J. Appl. Math. 74, 481–506 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Morozov, V.A.: Regularization Methods for Solving Incorrectly Posed Problems. Springer-Verlag, New York (1984)

    Book  Google Scholar 

  21. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Springer-Verlag, New York (2011). Applied Mathematical Sciences 120

    Book  MATH  Google Scholar 

  22. Leblond, J., Mahjoub, M., Partington, J.R.: Analytic extensions and Cauchy-type inverse problems on annular domains: stability results. J. Inv. Ill-Posed Probl. 14(2), 189–204 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Martin, T.J., Dulikravich, G.S.: Inverse determination of steady heat convection coefficient distributions. J. Heat Transfer 120, 328–334 (1998)

    Article  Google Scholar 

  24. Naphon, P., Wongwises, S.: A review of flow and heat transfer characteristics in curved tubes. Renew. Sustain. Energy Rev. 10, 463–490 (2006)

    Article  Google Scholar 

  25. Peiret, R: Spectral Methods for Incompressible Viscous Flow. Springer, Heildeberg (2002)

    Book  Google Scholar 

  26. Pakdaman, M.F., Akhavan-Behabadi, M.A., Razi, P.: An experimental investigation on thermo-physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes. Exper. Thermal Fluid Sci. 40, 103111 (2012)

    Google Scholar 

  27. Shivanian, E., Jafarabadi, A.: Inverse Cauchy problem of annulus domains in the framework of spectral meshless radial point interpolation. Engineering with Computers. https://doi.org/10.1007/s00366-016-0482-x

  28. Shirzadi, A., Takhtabnoos, F.: A local meshless method for Cauchy problem of elliptic PDEs in annulus domains. J. Inverse Probl. Sci. Eng. 24, 729–743 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tajani, C., Abouchabaka, J., Abdoun, O.: Data recovering problem using a new KMF algorithm for annular domain. Amer. J. Comp. Math. 2, 88–94 (2012)

    Article  MATH  Google Scholar 

Download references

Funding

The work of both authors was supported by CNPq, Brazil, grant 308523/2017-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fermin S. V. Bazán.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazán, F.S.V., Quiroz, J.R. Galerkin approach for estimating boundary data in Poisson equation on annular domain with application to heat transfer coefficient estimation in coiled tubes. Numer Algor 81, 79–98 (2019). https://doi.org/10.1007/s11075-018-0536-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0536-9

Keywords

Navigation