Skip to main content
Log in

Geometric multigrid algorithms for elliptic interface problems using structured grids

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this work, we develop geometric multigrid algorithms for the immersed finite element methods for elliptic problems with interface (Chou et al. Adv. Comput. Math. 33, 149–168 2010; Kwak and Lee, Int. J. Pure Appl. Math. 104, 471–494 2015; Li et al. Numer. Math. 96, 61–98 2003, 2004; Lin et al. SIAM J. Numer. Anal. 53, 1121–1144 2015). We need to design the transfer operators between levels carefully, since the residuals of finer grid problems do not satisfy the flux condition once projected onto coarser grids. Hence, we have to modify the projected residuals so that the flux conditions are satisfied. Similarly, the correction has to be modified after prolongation. Two algorithms are suggested: one for finite element spaces having vertex degrees of freedom and the other for edge average degrees of freedom. For the second case, we use the idea of conforming subspace correction used for P1 nonconforming case (Lee 1993). Numerical experiments show the optimal scalability in terms of number of arithmetic operations, i.e., \(\mathcal {O}(N)\) for \(\mathcal {V}\)-cycle and CG algorithms preconditioned with \(\mathcal {V}\)-cycle. In \(\mathcal {V}\)-cycle, we used only one Gauss-Seidel smoothing. The CPU times are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bramble, J.H., King, J.T.: A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv. Comput. Math. 6, 109–138 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bramble, J.H., Kwak, D.Y., Pasciak, J.E.: Uniform convergence of multigrid V-cycle iterations for indefinite and nonsymmetric problems. SIAM J. Numer. Anal. 31, 1746–1763 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bramble, J.H., Pasciak, J.E.: New convergence estimates for multigrid algorithms. Math. Comput. 49, 311–329 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bramble, J.H., Pasciak, J.E.: The analysis of smoothers for multigrid algorithms. Math. Comput. 58, 467–488 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bramble, J.H., Pasciak, J.E., Wang, J.P., Xu, J.: Convergence estimates for multigrid algorithms without regularity assumptions. Math. Comput. 57, 23–45 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bramble, J.H., Pasciak, J.E., Xu, J.: The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms. Math. Comput. 56, 1–34 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brenner, S.C.: An optimal-order multigrid method for P 1, nonconforming finite elements. Math. Comput. 52, 1–15 (1989)

    MATH  Google Scholar 

  9. Brenner, S.C.: Poincaré–friedrichs inequalities for piecewise H 1 functions. SIAM J. Numer. Anal. 41, 306–324 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chang, K.S., Kwak, D.Y.: Discontinuous bubble scheme for elliptic problems with jumps in the solution. Comput. Methods Appl. Mech. Eng. 200, 494–508 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, Z., Kwak, D.Y.: Convergence of multigrid methods for nonconforming finite elements without regularity assumptions. Comput. Appl. Math. 17, 283–302 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Chen, Z.: V-cycle galerkin-multigrid methods for nonconforming methods for nonsymmetric and indefinite problems. Appl. Numer. Math. 28, 17–35 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, Z., Oswald, P.: Multigrid and multilevel methods for nonconforming q 1 elements. Math. Comput. Amer. Math. Soc. 67, 667–693 (1998)

    Article  MATH  Google Scholar 

  14. Chen, Z., Zou, J.: Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79, 175–202 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chou, S.H., Kwak, D.Y., Wee, K.T.: Optimal convergence analysis of an immersed interface finite element method. Adv. Comput. Math. 33, 149–168 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Crouzeix, M., Raviart, P.A.: Conforming and nonconforming finite element methods for solving the stationary stokes equations i, Revue franċaise d’automatique, informatique, recherche opérationnelle. Mathématique 7, 33–75 (1973)

    Google Scholar 

  17. Ewing, R.E.: The mathematics of reservoir simulation (1983)

  18. Fedorenko, R.: The speed of convergence of one iterative process. USSR Comput. Math. Math. Phys. 4, 559–564 (1964)

    Google Scholar 

  19. Feng, W., He, X., Lin, Y., Zhang, X.: Immersed finite element method for interface problems with algebraic multigrid solver. Commun. Comput. Phys. 15, 1045–1067 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hackbusch, W.: Multi-grid methods and applications, vol. 4 of springer series in computational mathematics (1985)

  21. He, X., Lin, T., Lin, Y.: Approximation capability of a bilinear immersed finite element space. Numer. Methods Partial Differ. Equ. 24, 1265–1300 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jo, G., Kwak, D.Y.: An IMPES scheme for a two-phase flow in heterogeneous porous media using a structured grid. Comput. Methods Appl. Mech. Eng. 317, 684–701 (2017)

    Article  MathSciNet  Google Scholar 

  23. Kwak, D.Y.: V-cycle multigrid for cell-centered finite differences. SIAM J. Sci. Comput. 21, 552–564 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kwak, D.Y., Lee, J.: A modified p 1-immersed finite element method. Int. J. Pure Appl. Math. 104, 471–494 (2015)

    Article  Google Scholar 

  25. Kwak, D.Y., Lee, J.S.: Multigrid algorithm for the cell-centered finite difference method ii: discontinuous coefficient case. Numer. Methods Partial Differ. Equ. 20, 742–764 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kwak, D.Y., Wee, K.T., Chang, K.S.: An analysis of a broken p 1-nonconforming finite element method for interface problems. SIAM J. Numer. Anal. 48, 2117–2134 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lee, C.O.: A nonconforming multigrid method using conforming subspaces. In: the Proceedings of the Sixth Copper Mountain Conference on Multigrid Methods, pp. 317–330 (1993)

  28. Li, Z., Lin, T., Lin, Y., Rogers, R.C.: An immersed finite element space and its approximation capability. Numer. Methods Partial Differ. Equ. 20, 338–367 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, Z., Lin, T., Wu, X.: New cartesian grid methods for interface problems using the finite element formulation. Numer. Math. 96, 61–98 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lin, T., Lin, Y., Rogers, R., Ryan, M.L.: A rectangular immersed finite element space for interface problems. Adv. Comput. Theory Pract. 7, 107–114 (2001)

    MathSciNet  MATH  Google Scholar 

  31. Lin, T., Lin, Y., Zhang, X.: Partially penalized immersed finite element methods for elliptic interface problems. SIAM J. Numer. Anal. 53, 1121–1144 (2015). cited By 2

    Article  MathSciNet  MATH  Google Scholar 

  32. Lin, T., Yang, Q., Zhang, X.: A priori error estimates for some discontinuous galerkin immersed finite element methods. J. Sci. Comput. 65, 875–894 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lu, B., Zhou, Y., Holst, M., McCammon, J.: Recent progress in numerical methods for the poisson-boltzmann equation in biophysical applications. Commun. Comput. Phys. 3, 973–1009 (2008)

    MATH  Google Scholar 

  34. McCormick, S.F.: Multigrid methods, vol. 3. SIAM, Bangkok (1987)

    Book  Google Scholar 

  35. Nitsche, J.: ÜBer ein Variationsprinzip zur lösung von Dirichlet-Problemen bei Verwendung von teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem mathematischen Seminar der universität Hamburg, pp. 36 (1971)

  36. Rannacher, R., Turek, S.: Simple nonconforming quadrilateral stokes element. Numer. Methods Partial Differ. Equ. 8, 97–111 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  37. Roĭtberg, J. A., Šeftel’, Z.: A theorem on homeomorphisms for elliptic systems and its applications. Sbornik: Math. 7, 439–465 (1969)

    Article  Google Scholar 

  38. Vohralík, M.: On the discrete poincaré–friedrichs inequalities for nonconforming approximations of the sobolev space h 1. Numer. Funct. Anal. Optim. 26, 925–952 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwanghyun Jo.

Additional information

The work of this author is supported by National Research Foundation, contract No. 2017R1D1A1B03032765

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, G., Kwak, D.Y. Geometric multigrid algorithms for elliptic interface problems using structured grids. Numer Algor 81, 211–235 (2019). https://doi.org/10.1007/s11075-018-0544-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0544-9

Keywords

Navigation