Skip to main content
Log in

Finding optimal convergence control parameter in the homotopy analysis method to solve integral equations based on the stochastic arithmetic

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The goal of this paper is to present a new scheme based on the stochastic arithmetic (SA) to find the optimal convergence control parameter, the optimal iteration and the optimal approximation of the homotopy analysis method (HAM). This scheme is called the CESTAC1 method. Also, the CADNA2 library is applied to implement the CESTAC method on the proposed algorithms. CADNA is able to present a new, robust and valid environment to implement the HAM and optimize the results. By using this method, not only the optimal auxiliary control parameter can be computed but also the unnecessary iterations can be neglected and optimal step of this method is achieved. The main theorems are presented to guarantee the validity and accuracy of the HAM. Different kinds of integral equations such as singular and first kind are considered to find the optimal results by applying the proposed algorithms. The numerical results show the importance and efficiency of the SA in comparison with the floating-point arithmetic (FPA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbasbandy, S.: Soliton solutions for the Fitzhugh-Nagumo equation with the homotopy analysis method. Appl. Math. Model. 32, 2706–2714 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abbasbandy, S., Fariborzi Araghi, M.A.: The use of the stochastic arithmetic to estimate the value of interpolation polynomial with optimal degree. Appl. Numer. Math. 50, 279–290 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abbasbandy, S., Fariborzi Araghi, M.A.: A reliable method to determine the ill-condition functions using stochastic arithmetic. Southwest J. Pure Appl. Math. 1, 33–38 (2002)

    MathSciNet  MATH  Google Scholar 

  4. Abbasbandy, S., Fariborzi Araghi, M.A.: Numerical solution of improper integrals with valid implementation. Math. Comput. Appl. 7, 83–91 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Abbasbandy, S., Fariborzi Araghi, M.A.: The valid implementation of numerical integration methods. Far. East. J. Appl. Math. 8, 89–101 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Abbasbandy, S., Fariborzi Araghi, M.A.: A stochastic scheme for solving definite integrals. Appl. Numer. Math. 55, 125–136 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Abbasbandy, S.: Homotopy analysis method for heat radiation equations. Int. Commun. Heat Mass Transf. 34, 380–387 (2007)

    Article  Google Scholar 

  8. Abbasbandy, S., Shivanian, E., Vajravelu, K.: Mathematical properties of \(\hbar \)-curve in the frame work of the homotopy analysis method. Commun. Nonlinear Sci. Numer. Simulat. 16, 4268–4275 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Abbasbandy, S., Jalili, M.: Determination of optimal convergence-control parameter value in homotopy analysis method. Numer. Algor. 64(4), 593–605 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Abdulaziz, O., Noor, N.F.M., Hashim, I.: Homotopy analysis method for fully developed MHD micropolar fluid flow between vertical porous plates. Int. J. Numer. Meth. Eng. 78, 817–827 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Abidi, F., Omrani, K.: The homotopy analysis method for solving the Fornberg-Whitham equation and comparison with Adomian’s decomposition method. Comput. Math. Appl. 59, 2743–2750 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Adawi, A., Awawdeh, F., jaradat, H.: A numerical method for solving linear integral equations. Int. J. Contemp. Math. Sciences 4, 485–496 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Alomari, A.K., Noorani, M.S.M., Nazar, R.: Explicit series solutions of some linear and nonlinear Schrodinger equations via the homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 14, 1196–1207 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Alt, R., Vignes, J.: Validation of results of collocation methods for ODEs with the CADNA library. Appl. Numer. Math. 21, 119–139 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Avazzadeh, Z., Shafiee, B., Loghmani, G.B.: Fractional calculus for solving Abel’s integral equations using Chebyshev polynomials. Appl. Math. Sci. 5, 2207–2216 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Bougoffa, L., Mennouni, A., Rach, R.C.: Solving Cauchy integral equations of the first kind by the Adomian decomposition method. Appl. Math. Comput. 219, 4423–4433 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Chesneaux, J.M., Jezequel, F.: Dynamical control of computations using the Trapezoidal and Simpson’s rules. J. Univ. Comput. Sci. 4(1), 2–10 (1998)

    MathSciNet  MATH  Google Scholar 

  18. Chesneaux, J.M.: Study of the computing accuracy by using probabilistic approach. In: Ullrich, C. (ed.) Contribution to computer arithmetic and self-validating numerical methods, IMACS. New Brunswick, NJ (1990)

  19. Chesneaux, J.M.: The equality relations in scientific computing. Numer. Algor. 7, 129–143 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chesneaux, J.M.: Stochastic arithmetic properties, In: Brezinski, C. (ed.) Comput. Appl. Math., I Algorithms and theory, pp. 81–91 North Holland (1992)

  21. Curato, G., Gatheral, J., Lillo, F.: Discrete homotopy analysis for optimal trading execution with nonlinear transient market impact. Commun. Nonlinear Sci. Numer. Simul. 39, 332–342 (2016)

    Article  MathSciNet  Google Scholar 

  22. Desmarais, R.N., Bland, S.R.: Tables of properties of airfoil polynomials, NASA langley RP-1343 (1995)

  23. Fariborzi Araghi, M.A., Noeiaghdam, S.: Fibonacci-regularization method for solving Cauchy integral equations of the first kind. Ain. Shams Eng. J. 8, 363–369 (2017)

    Article  Google Scholar 

  24. Fariborzi Araghi, M., Noeiaghdam, S.: A novel technique based on the homotopy analysis method to solve the first kind Cauchy integral equations arising in the theory of airfoils. J. Interpolation Approx. Sci. Comput. 1, 1–13 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Fariborzi Araghi, M.A., Noeighdam, S.: Dynamical control of computations using the Gauss-Laguerre integration rule by applying the CADNA library. Adv. Appl. Math. Sci. 16, 1–18 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Fariborzi Araghi, M.A., Noeiaghdam, S.: A valid scheme to evaluate fuzzy definite integrals by applying the CADNA library. Int. J. Fuzzy Syst. Appl. 6(4), 1–20 (2017)

    Article  MATH  Google Scholar 

  27. Fariborzi Araghi, M.A., Noeiaghdam, S.: Homotopy analysis transform method for solving generalized Abel’s fuzzy integral equations of the first kind IEEE (2016). https://doi.org/10.1109/CFIS.2015.7391645

  28. Fariborzi Araghi, M.A., Noeiaghdam, S.: Homotopy regularization method to solve the singular Volterra integral equations of the first kind. Jordan J. Math. Stat. (JJMS) 11(1), 1–12 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Faye, J. -P., Vignes, J.: Stochastic approach of the permutation-perturbation method for round-off error analysis. Appl. Numer. Math. 1, 349–362 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  30. Golbabai, A., Fardi, M., Sayevand, K.: Application of the optimal homotopy asymptotic method for solving a strongly nonlinear oscillatory system. Math. Comput. Model. 58, 1837–1843 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hassan, H.N., El-Tawil, M.A.: A new technique of using homotopy analysis method for second order nonlinear differential equations. Appl. Math. Comput. 219, 708–728 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Hashmi, M.S., Khan, N., Iqbal, S.: Numerical solutions of weakly singular Volterra integral equations using the optimal homotopy asymptotic method. Comput. Math. Appl. 64, 1567–1574 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hashmi, M.S., Khan, N., Iqbal, S.: Optimal homotopy asymptotic method for solving nonlinear Fredholm integral equations of second kind. Appl. Math. Comput. 218, 10982–10989 (2012)

    MathSciNet  MATH  Google Scholar 

  34. Hetmaniok, E., Slota, D., Trawinski, T., Witula, R.: Usage of the homotopy analysis method for solving the nonlinear and linear integral equations of the second kind. Numer. Algor. 67, 163–185 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Huang, L., Huang, Y., Li, X.F.: Approximate solution of Abel integral equation. Comput. Math. Appl. 56, 1748–1757 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Khan, N., Hashmi, M.S., Iqbal, S., Mahmood, T.: Optimal homotopy asymptotic method for solving Volterra integral equation of first kind. Alex. Eng. J. 53, 751–755 (2014)

    Article  Google Scholar 

  37. Khojasteh Salkuyeh, D., Toutounian, F.: Numerical accuracy of a certain class of iterative methods for solving linear system. Appl. Math. Comput. 176, 727–738 (2006)

    MathSciNet  MATH  Google Scholar 

  38. Kumar, S., Singh, J., Kumar, D., Kapoor, S.: New homotopy analysis transform algorithm to solve Volterra integral equation. Ain. Shams Eng. J. 5, 243–246 (2014)

    Article  Google Scholar 

  39. Kumar, D., Singh, J.: Sushila, Application of homotopy analysis transform method to fractional biological population model. Rom. Rep. Phys. 65, 63–75 (2013)

    Google Scholar 

  40. Liao, S.J.: The proposed homotopy analysis techniques for the solution of nonlinear problems. Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai (1992). (in English)

    Google Scholar 

  41. Liao, S.J.: Beyond perturbation: introduction to homotopy analysis method. Chapman and Hall/CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  42. Liao, S.J.: On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147, 499–513 (2004)

    MathSciNet  MATH  Google Scholar 

  43. Liao, S.J.: Homotopy analysis method in nonlinear differential equations. Higher Education Press Beijing and Springer-Verlag, Berlin Heidelberg (2012)

    Book  MATH  Google Scholar 

  44. Liao, S.J., Tan, Y.: A general approach to obtain series solutions of nonlinear differential equations. Stud. Appl. Math. 119, 297–355 (2007)

    Article  MathSciNet  Google Scholar 

  45. Liao, S.: An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simulat. 15, 2003–2016 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Mallory, K., Van Gorder, R.A.: Optimal homotopy analysis and control of error for solutions to the non-local Whitham equation. Numer. Algor. 66, 843–863 (2014)

    MathSciNet  MATH  Google Scholar 

  47. Martin, O.: On the homotopy analysis method for solving a particle transport equation. Appl. Math. Model. 37, 3959–3967 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Mastroberardino, A.: Homotopy analysis method applied to electrohydrodynamic flow. Commun. Nonlinear Sci. Numer. Simul. 16, 2730–2736 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Mikaeilvand, N., Noeiaghdam, S.: Mean value theorem for integrals and its application on numerically solving of Fredholm integral equation of second kind with Toeplitz plus Hankel Kernel. Int. J. Ind. Math. 6, 351–360 (2014)

    Google Scholar 

  50. Moghimi, S.M., Domairry, G., Soleimani, S., Ghasemi, E., Bararnia, H.: Application of homotopy analysis method to solve MHD Jeffery-Hamel flows in non-parallel walls. Adv. Eng. Softw. 42, 108–113 (2011)

    Article  MATH  Google Scholar 

  51. Montagnac, M., Chesneaux, J. -M.: Dynamic control of a bicgstab algorithm. Appl. Numer. Math. 32, 103–117 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  52. Niu, Z., Wang, C.: A one-step optimal homotopy analysis method for nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 15, 2026–2036 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Noeiaghdam, S.: Numerical solution of N-th order Fredholm integro-differential equations by integral mean value theorem method. Int. J. Pure Appl. Math. 99(3), 277–287 (2015)

    Article  Google Scholar 

  54. Noeiaghdam, S., Zarei, E., Barzegar Kelishami, H.: Homotopy analysis transform method for solving Abel’s integral equations of the first kind. Ain. Shams Eng J. 7, 483–495 (2016)

    Article  Google Scholar 

  55. Noeiaghdam, S., Fariborzi Araghi, M.A.: Finding optimal step of fuzzy Newton-Cotes integration rules by using the CESTAC method. J. Fuzzy Set Valued Anal. 2017(2), 62–85 (2017)

    Article  Google Scholar 

  56. Odibat, Z.M.: A study on the convergence of homotopy analysis method. Appl. Math. Comput. 217, 782–789 (2010)

    MathSciNet  MATH  Google Scholar 

  57. Panda, S., Bhowmik, A., Das, R., Repaka, R., Martha, S.C.: Application of homotopy analysis method and inverse solution of a rectangular wet fin. Energy Convers. Manag. 80, 305–318 (2014)

    Article  MATH  Google Scholar 

  58. Rashidi, M.M., Domairry, G., Dinarvand, S.: The Homotopy Analysis Method for Explicit Analytical Solutions of Jaulent-Miodek Equations, Wiley InterScience (2008)

  59. Saberi Nik, H., Effati, S., Motsa, S.S., Shateyi, S.: A new piecewise-spectral homotopy analysis method for solving chaotic systems of initial value problems. Hindawi Publ. Corp. Math. Probl. Eng. 13, 13 (2013)

    MATH  Google Scholar 

  60. Saka, M.G., Erdogan, F.: The homotopy analysis method for solving the time-fractional Fornberg-Whitham equation and comparison with Adomian’s decomposition method. Appl. Math. Model. 37, 8876–8885 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  61. Sami Bataineh, A., Noorani, M.S.M., Hashim, I.: Homotopy analysis method for singular IVPs of Emden-Fowler type. Commun. Nonlinear Sci. Numer. Simul. 14, 1121–1131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  62. Shaban, M., Kazem, S., Rad, J.A.: A modification of the homotopy analysis method based on Chebyshev operational matrices. Math. Comput. Modell. 57, 1227–1239 (2013)

    Article  MathSciNet  Google Scholar 

  63. Shukla, A.K., Ramamohan, T.R., Srinivas, S.: Homotopy analysis method with a non-homogeneous term in the auxiliary linear operator. Commun. Nonlinear Sci. Numer. Simulat. 17, 3776–3787 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  64. Suleman, M., Lu, D., He, J.H., Farooq, U., Noeiaghdam, S., Chandio, F.A.: Elzaki projected differential transform method for fractional order system of linear and nonlinear fractional partial differential equation, Fractals, In Press (2018). https://doi.org/10.1142/S0218348X1850041X

  65. Tan, Y., Abbasbandy, S.: Homotopy analysis method for quadratic Riccati differential equation. Commun. Nonlinear Sci. Numer. Simul. 13, 539–546 (2008)

    Article  MATH  Google Scholar 

  66. Toutounian, F.: The use of the CADNA library for validating the numerical results of the hybrid GMRES algorithm. Appl. Numer. Math. 23, 275–289 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  67. Van Gorder, R.A., Vajravelu, K.: On the selection of auxiliary functions, operators, and convergence control parameters in the application of the Homotopy Analysis Method to nonlinear differential equations: A general approach. Commun. Nonlinear Sci. Numer. Simul. 14, 4078–4089 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  68. Van Gorder, R.A.: Control of error in the homotopy analysis of semi-linear elliptic boundary value problems. Numer. Algor. 61, 613–629 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  69. Vignes, J.: A stochastic arithmetic for reliable scientific computation. Math. Comput. Simul. 35, 233–261 (1993)

    Article  MathSciNet  Google Scholar 

  70. Vosughi, H., Shivanian, E., Abbasbandy, S.: A new analytical technique to solve Volterra’s integral equations. Math. Methods Appl. Sci. 34, 1243–1253 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  71. Wang, Q.: The optimal homotopy-analysis method for Kawahara equation. Nonlinear Anal. Real World Appl. 12, 1555–1561 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  72. Wazwaz, A.M.: Linear and nonlinear integral equations: methods and applications, higher education, beijing, and springer berlin (2011)

  73. Yousefi, S.A.: Numerical solution of Abel’s integral equation by using Legendre wavelets. Appl. Math. Comput. 175, 574–580 (2006)

    MathSciNet  MATH  Google Scholar 

  74. Yucel, U.: Homotopy analysis method for the sine-Gordon equation with initial conditions. Appl. Math. Comput. 203, 387–395 (2008)

    MathSciNet  MATH  Google Scholar 

  75. Zhu, H., Shu, H., Ding, M.: Numerical solutions of partial differential equations by discrete homotopy analysis method. Appl. Math. Comput. 216, 3592–3605 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Fariborzi Araghi.

Additional information

Controle et Estimation Stochastique des Arrondis de Calculs

Control of Accuracy and Debugging for Numerical Applications

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noeiaghdam, S., Fariborzi Araghi, M.A. & Abbasbandy, S. Finding optimal convergence control parameter in the homotopy analysis method to solve integral equations based on the stochastic arithmetic. Numer Algor 81, 237–267 (2019). https://doi.org/10.1007/s11075-018-0546-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0546-7

Keywords

Navigation