Skip to main content
Log in

A Crank-Nicolson-type compact difference method and its extrapolation for time fractional Cattaneo convection-diffusion equations with smooth solutions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A high-order Crank-Nicolson-type compact difference method is proposed for a class of time fractional Cattaneo convection-diffusion equations with smooth solutions. The convection coefficient of the equation may be spatially variable. A suitable transformation is adopted to transform the original equation into a reaction-diffusion equation, which is then discretized by a fourth-order compact difference approximation for the spatial derivative and by a second-order Crank-Nicolson-type difference approximation for the time first derivative and the Caputo time fractional derivative. The local truncation error and the solvability of the resulting scheme are discussed in detail. The (almost) unconditional stability of the method and its convergence of second order in time and fourth order in space are rigorously proved using a discrete energy analysis method. A Richardson extrapolation algorithm, including its rigorous convergence analysis, is presented. This extrapolation algorithm improves the temporal accuracy of the computed solution to the third order. An application of the proposed method to the non-smooth solution which has a weak singularity at the initial time is also discussed by introducing a correction term. Numerical results demonstrate the accuracy of the new method and the high efficiency of the Richardson extrapolation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brunner, H., Ling, L., Yamamoto, M.: Numerical simulations of 2D fractional subdiffusion problems. J. Comput. Phys. 229, 6613–6622 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao, J.Y., Xu, C.J.: A high order schema for the numerical solution of the fractional ordinary differential equations. J. Comput. Phys. 238, 154–168 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, J., Liu, F., Anh, V., Shen, S., Liu, Q., Liao, C.: The analytical solution and numerical solution of the fractional diffusion-wave equation with damping. Appl. Math. Comp. 219, 1737–1748 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Compte, A., Metzler, R.: The generalized Cattaneo equation for the description of anomalous transport processes. J. Phys. A: Math. Gen. 30, 7277–7289 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Das, P.: A higher order difference method for singularly perturbed parabolic partial differential equations. J. Differ. Equ. Appl. 24, 452–477 (2018)

    Article  MathSciNet  Google Scholar 

  7. Das, P., Mehrmann, V.: Numerical solution of singularly perturbed convection-diffusion-reaction problems with two small parameters. BIT Numer. Math. 56, 51–76 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Das, P., Natesan, S.: Richardson extrapolation method for singularly perturbed convection-diffusion problems on adaptively generated mesh. CMES: Comput. Model. Eng. Sci. 90, 463–485 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Das, P., Vigo-Aguiar, J.: Parameter uniform optimal order numerical approximation of a class of singularly perturbed system of reaction diffusion problems involving a small perturbation parameter. J. Comput. Appl. Math. https://doi.org/10.1016/j.cam.2017.11.026

  10. Dimitrov, Y.: Numerical approximations for fractional differential equations. J. Frac. Calc. Appl. 5, 1–45 (2014)

    MathSciNet  Google Scholar 

  11. Gao, G.H., Sun, H.W., Sun, Z.Z.: Some high-order difference schemes for the distributed-order differential equations. J. Comput. Phys. 298, 337–359 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ghazizadeh, H.R., Maerefat, M., Azimi, A.: Explicit and implicit finite difference schemes for fractional Cattaneo equation. J. Comput. Phys. 229, 7042–7057 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Godoy, S., Garcia-Colin, L.S.: From the quantum random walk to classical mesoscopic diffusion in crystalline solids. Phys. Rev. E 53, 5779–5785 (1996)

    Article  Google Scholar 

  15. Gomez, H., Colominas, I., Navarrina, F., Casteleiro, M.: A mathematical model and a numerical model for hyperbolic mass transport in compressible flows. Heat Mass Transf. 45, 219–226 (2008)

    Article  MATH  Google Scholar 

  16. Ji, C.C., Sun, Z.Z.: A high-order compact finite difference scheme for the fractional sub-diffusion equation. J. Sci. Comput. 64, 959–985 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ji, C.C., Sun, Z.Z.: The high-order compact numerical algorithms for the two-dimensional fractional sub-diffusion equation. Appl. Math. Comput. 269, 775–791 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35, 561–582 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36, 197–221 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38, A146–A170 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jin, B., Li, B., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39, A3129–A3152 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jin, B., Zhou, Z.: An analysis of Galerkin proper orthogonal decomposition for subdiffusion. ESAIM Math. Model. Numer. Anal. 51, 89–113 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jou, D., Casas-Vazquez, J., Lebon, G.: Extended Irreversible Thermodynamics. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  24. Li, C.P., Chen, A., Ye, J.J.: Numerical approaches to fractional calculus and fractional ordinary differential equation. J. Comput. Phys. 230, 3352–3368 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, C.P., Zeng, F.H.: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, Boca Raton (2015)

    Book  MATH  Google Scholar 

  26. Liao, W.: A compact high-order finite difference method for unsteady convection-diffusion equation. Int. J. Comput. Methods Eng. Sci. Mech. 13, 135–145 (2012)

    Article  MathSciNet  Google Scholar 

  27. Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection-dispersion models. Comput. Math. Appl. 64, 2990–3007 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17, 704–719 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Luchko, Y.: Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation. Fract. Calc. Appl. Anal. 15, 141–160 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted Numerical Methods for Singular Perturbation Problems. World Scientific, Singapore (1996)

    Book  MATH  Google Scholar 

  31. Mustapha, K., Almutawa, J.: A finite difference method for an anomalous sub-diffusion equation, theory and applications. Numer. Algor. 61, 525–543 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Povstenko, Y.Z.: Fractional Cattaneo-type equations and generalized thermoelasticity. J. Therm. Stresses 34, 97–114 (2011)

    Article  Google Scholar 

  33. Qi, H., Jiang, X.: Solutions of the space-time fractional Cattaneo diffusion equation. Phys. A 390, 1876–1883 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, New York (1997)

    MATH  Google Scholar 

  35. Ren, J.C., Gao, G.H.: Efficient and stable numerical methods for the two-dimensional fractional Cattaneo equation. Numer. Algor. 69, 795–818 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Samarskii, A.A.: The Theory of Difference Schemes. Marcel Dekker Inc., New York (2001)

    Book  MATH  Google Scholar 

  38. Stynes, M., O’Riordan, E., Luis Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sun, H., Sun, Z.Z., Gao, G.H.: Some temporal second order difference schemes for fractional wave equations. Numer. Methods Partial Differ. Equ. 32, 970–1001 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Varga, R.S.: Matrix Iterative Analysis. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  42. Vong, S.W., Pang, H.K., Jin, X.Q.: A high-order difference scheme for the generalized Cattaneo equation. East Asian J. Appl. Math. 2, 170–184 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Vong, S., Wang, Z.: High order difference schemes for a time-fractional differential equation with Neumann boundary conditions. East Asian J. Appl. Math. 4, 222–241 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, Y.-M.: A compact finite difference method for a class of time fractional convection-diffusion-wave equations with variable coefficients. Numer. Algor. 70, 625–651 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, Y.-M.: A high-order compact finite difference method and its extrapolation for fractional mobile/immobile convection-diffusion equations. Calcolo 54, 733–768 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zakari, M., Jou, D.: Equations of state and transport equations in viscous cosmological models. Phys. Rev. D 48, 1597–1601 (1993)

    Article  Google Scholar 

  48. Zeng, F., Li, C., Liu, F., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37, A55–A78 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhai, S.Y., Feng, X.L., He, Y.N.: An unconditionally stable compact ADI method for three-dimensional time-fractional convection-diffusion equation. J. Comput. Phys. 269, 138–155 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang, Y., Benson, D.A., Reeves, D.W.: Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications. Adv. Water Resour. 32, 561–581 (2009)

    Article  Google Scholar 

  51. Zhang, Y.N., Sun, Z.Z., Wu, H.W.: Error estimates of Crank-Nicolson-type difference schemes for the subdiffusion equation. SIAM J. Numer. Anal. 49, 2302–2322 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhao, L.J., Deng, W.H.: A series of high order quasi-compact schemes for space fractional diffusion equations based on the superconvergent approximations for fractional derivatives. Numer. Methods Partial Differ. Equ. 31, 1345–1381 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhao, X., Sun, Z.Z.: Compact Crank-Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium. J. Sci. Comput. 62, 747–771 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhou, H., Tian, W.Y., Deng, W.H.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56, 45–66 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zorich, V.A.: Mathematical Analysis II. Springer, Berlin (2004)

    MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referees for their valuable comments and suggestions which improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Ming Wang.

Additional information

This work was supported in part by Science and Technology Commission of Shanghai Municipality (STCSM) (No. 18dz2271000).

Appendices

Appendix A

A.1 Proof of Proposition 2.1

Proof

Since y(t) ∈ Cr[0,T], its extension yex(t) is r-times continuously differentiable at \(t\in \mathbb {R} \setminus \{0\}\) and has one-sided derivatives of order up to r at t = 0. This implies yex(t) ∈ Cr[0,). Moreover, for each k = 0, 1,…,r, \({y}_{\text {ex}}^{(k)}(t)\) is absolutely integrable on \(\mathbb {R}\) (define, e.g., \({y}_{\text {ex}}^{(k)}(0) = y^{(k)}(0)\)) and thus its Fourier transformation \({\mathcal {F}} \left [{y}_{\text {ex}}^{(k)}\right ](\omega )\) is defined.

Assume, by contradiction, that there exists 0 ≤ rr − 1 such that y(k)(0) = 0 for k = 0, 1,…,r− 1 but \(y^{(r^{\prime })}(0)\not = 0\). By integrating by parts,

$$\begin{array}{@{}rcl@{}} {\mathcal{F}} \left[{y}_{\text{ex}}^{(r^{\prime}+ 1)}\right] (\omega) &=& {{\int}_{0}^{\infty}} \mathrm{e}^{\mathrm{i}\omega t} {y}_{\text{ex}}^{(r^{\prime}+ 1)}(t) \mathrm{d}t = -y^{(r^{\prime})}(0) - \mathrm{i} \omega {\mathcal{F}} \left[{y}_{\text{ex}}^{(r^{\prime})}\right] (\omega)\\ &=& -y^{(r^{\prime})}(0) + (-\mathrm{i}\omega)^{2} {\mathcal{F}} \left[{y}_{\text{ex}}^{(r^{\prime}-1)}\right] (\omega)\\ &=& {\cdots} = -y^{(r^{\prime})}(0) + (-\mathrm{i}\omega)^{r^{\prime}+ 1} \hat{y}_{\text{ex}}(\omega). \end{array} $$
(A.1)

By the Riemann-Lebesgue lemma (see [55]), \({\lim _{|\omega |\rightarrow \infty }} {\mathcal {F}} \left [{y}_{\text {ex}}^{(r^{\prime }+ 1)}\right ] (\omega )= 0\). We therefore obtain from (A.1) that \(\lim _{|\omega |\rightarrow \infty }(-\mathrm {i}\omega )^{r^{\prime }+ 1} \hat {y}_{\text {ex}}(\omega )= y^{(r^{\prime })}(0)\not = 0\). This implies

$$\begin{array}{@{}rcl@{}} \underset{|\omega|\rightarrow \infty}{\lim} |\omega|^{r^{\prime} + 1 - r_{0} - \beta} \left|\omega\right|^{r_{0}+\beta} \left|\hat{y}_{\text{ex}}(\omega)\right| = \underset{|\omega|\rightarrow \infty}{\lim} |\omega|^{r^{\prime}+ 1} \left|\hat{y}_{\text{ex}}(\omega)\right| = \left|y^{(r^{\prime})}(0)\right|\not= 0. \end{array} $$

Since r + 1 − r0β < 1, we get that the function \(|\omega |^{r_{0}+\beta } |\hat {y}_{\text {ex}}(\omega )|\) is not integrable on \(\mathbb {R}\). This contradicts \(y_{\text {ex}}(t) \in \mathscr{C}^{r_{0}+\beta } (\mathbb {R})\). This proves that y(k)(0) = 0 for k = 0, 1,…,r − 1. □

A.2 Proof of Proposition 4.1

Proof

For each k = 2, 3, 4, we define

$$ w_{k}(x,t) = \sigma \frac{\partial^{k + 1} u}{\partial t^{k-1} \partial x^{2}} (x,t) + q(x) \frac{\partial^{k-1} u}{\partial t^{k-1}}(x,t) - \frac{\partial^{k} u}{\partial t^{k}}(x,t) - \gamma {{~}_{~0}^{C} {\mathcal{D}}_{t}^{k-1+\alpha}} u(x,t). $$
(A.2)

Case 1: k = 2. Differentiating the governing equation in (??) with respect to t, we obtain

$$ \frac{\partial^{2} u}{\partial t^{2}}(x,t) = - \gamma \frac{\partial ({{}_{~0}^{C}{\mathcal{D}}_{t}^{\alpha}}u)}{\partial t} (x,t) + \sigma \frac{\partial^{3} u}{\partial t\partial x^{2}}(x,t) + q(x) \frac{\partial u}{\partial t} (x,t) + \frac{\partial g}{\partial t}(x,t), \,\,\,\,\, t\not= 0. $$
(A.3)

By integrating by parts and differentiating with respect to t,

$$\begin{array}{@{}rcl@{}} \frac{\partial ({{}_{~0}^{C}{\mathcal{D}}_{t}^{\alpha}}u)}{\partial t}(x,t) = \frac{\partial^{2} u}{\partial t^{2}}(x,0) \frac{1}{{\Gamma} (2-\alpha) t^{\alpha-1}} + {{}_{~0}^{C}{\mathcal{D}}_{t}^{1+\alpha}}u(x,t), \qquad t\not = 0. \end{array} $$
(A.4)

We thus have from (A.3) that

$$\begin{array}{@{}rcl@{}} \frac{\partial^{2} u}{\partial t^{2}}(x,0) = \frac{{\Gamma} (2-\alpha)}{\gamma}w_{2}(x,t)t^{\alpha-1}+F_{2}(x,t), \qquad t\not= 0. \end{array} $$
(A.5)

The continuation property of w2(x,t) and α ∈ (1, 2) imply \({\lim _{t\rightarrow 0}} w_{2}(x,t)t^{\alpha -1}= 0\). This proves that the limit \({\lim _{t\rightarrow 0}} F_{2}(x,t)\) exists and (??) holds true for k = 2.

Case 2: k = 3. Differentiating the (A.3) and (A.4) with respect to t gives

$$\begin{array}{@{}rcl@{}} \frac{\partial^{3} u}{\partial t^{3}}(x,t) &=& -\gamma \frac{\partial^{2} ({{}_{0}^{\mathcal{C}}{\mathcal{D}}_{t}^{\alpha}u})}{\partial t^{2}}(x,t)+\sigma \frac{\partial^{4} u}{\partial t^{2} \partial x^{2}}(x,t) + q(x) \frac{\partial^{2} u}{\partial t^{2}}(x,t)\\ &&+ \frac{\partial^{2} g}{\partial t^{2}}(x,t), \qquad t\not= 0, \end{array} $$
(A.6)
$$\begin{array}{@{}rcl@{}} \frac{\partial^{2} ({{}_{~0}^{C}{\mathcal{D}}_{t}^{\alpha}}u)}{\partial t^{2}}(x,t) &=& \frac{1}{{\Gamma} (2-\alpha) t^{\alpha-1}} \left( \frac{\partial^{2} u}{\partial t^{2}}(x,0) \frac{1 - \alpha}{t} + \frac{\partial^{3} u}{\partial t^{3}}(x,0)\right)\\ &&+ {{}_{~0}^{C}{\mathcal{D}}_{t}^{2+\alpha}} u(x,t), \qquad t\not= 0. \end{array} $$
(A.7)

This shows

$$\begin{array}{@{}rcl@{}} \frac{\partial^{3} u}{\partial t^{3}}(x,0) = \frac{{\Gamma} (2-\alpha)}{\gamma} w_{3}(x,t)t^{\alpha-1} + F_{3}(x,t), \qquad t\not= 0. \end{array} $$
(A.8)

Letting t → 0 in (A.8), we get (??) for k = 3.

Case 3: k = 4. Differentiating the (A.6) and (A.7) with respect to t and solving for \(\frac {\partial ^{4} u}{\partial t^{4}}(x,0)\), we obtain

$$\begin{array}{@{}rcl@{}} \frac{\partial^{4} u}{\partial t^{4}}(x,0) = \frac{{\Gamma} (2-\alpha)}{\gamma}w_{4}(x,t)t^{\alpha-1}+F_{4}(x,t), \qquad t\not= 0. \end{array} $$
(A.9)

Then, (??) for k = 4 follows by letting t → 0 in the above equality. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YM. A Crank-Nicolson-type compact difference method and its extrapolation for time fractional Cattaneo convection-diffusion equations with smooth solutions. Numer Algor 81, 489–527 (2019). https://doi.org/10.1007/s11075-018-0558-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0558-3

Keywords

Mathematics Subject Classification (2010)

Navigation