Skip to main content
Log in

A 5-instant finite difference formula to find discrete time-varying generalized matrix inverses, matrix inverses, and scalar reciprocals

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Finite difference schemes have been widely studied because of their fundamental role in numerical analysis. However, most finite difference formulas in the literature are not suitable for discrete time-varying problems because of intrinsic limitations and their relatively low precision. In this paper, a high-precision 1-step-ahead finite difference formula is developed. This 5-instant finite difference (5-IFD) formula is used to approximate and discretize first-order derivatives, and it helps us to compute discrete time-varying generalized matrix inverses. Furthermore, as special cases of generalized matrix inverses, time-varying matrix inversion, and scalar reciprocals are generally deemed as independent problems and studied separately, which are solved unitedly in this paper. The precision of the 5-IFD formula and the convergence behavior of the corresponding discrete-time models are derived theoretically and shown in numerical experiments. Conventional useful formulas, such as the Euler forward finite difference (EFFD) formula and the 4-instant finite difference (4-IFD) formula are also used for comparisons and to show the superiority of the 5-IFD formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu, P., Kampen, E., Visser, C., Chu, Q.: Aircraft fault-tolerant trajectory control using incremental nonlinear dynamic inversion. Control Eng. Pract. 57, 126–141 (2016)

    Article  Google Scholar 

  2. Zhou, F., Jiang, J., Shui, P.: Fast design of 2D fully oversampled DFT modulated filter bank using Toeplitz-block Toeplitz matrix inversion. Signal Process. 111, 194–198 (2015)

    Article  Google Scholar 

  3. Cai, B., Jiang, X.: A novel artificial neural network method for biomedical prediction based on matrix pseudo-inversion. J. Biomed. Inform. 48, 114–121 (2014)

    Article  Google Scholar 

  4. El-Mikkawy, M.E.A.: Inversion of a generalized Vandermonde matrix. Int. J. Comput. Moth. 80, 759–765 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Evans, D.J.: An implicit iterative process for matrix inversion. Int. J. Comput. Moth. 9, 335–341 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Vajargah, B.F.: A way to obtain Monte Carlo matrix inversion with minimal error. Appl. Math. Comput. 191, 225–233 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Petkovic, M.D., Stanimirovic, P.S.: Generalized matrix inversion is not harder than matrix multiplication. J. Comput. Appl. Math. 230, 270–282 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Che, K., Yi, C.: Robustness analysis of a hybrid of recursive neural dynamics for online matrix inversion. Appl. Math. Comput. 273, 969–975 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Chen, K.: Recurrent implicit dynamics for online matrix inversion. Appl. Math. Comput. 219, 10218–10224 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Chawla, M.M., Passi, K., Shivakumar, P.N.: A recursive partitioning algorithm for inverting tridiagonal matrices. Int. J. Comput. Moth. 35, 153–158 (1990)

    Article  MATH  Google Scholar 

  11. Margaritis, K.G., Evans, D.J.: Iterative matrix inversion on a systolic array: a case of algorithm integration. Int. J. Comput. Moth. 51, 95–106 (1994)

    Article  Google Scholar 

  12. Sharma, G., Agarwala, A., Bhattacharya, B.: A fast parallel Gauss Jordan algorithm for matrix inversion using CUDA. Comput. Struct. 128, 31–37 (2013)

    Article  Google Scholar 

  13. Amestoy, P.R., Duff, I.S., L’Excellent, J.Y., Rouet, F.H.: Parallel computation of entries of A − 1. SIAM J. Sci. Comput. 37, 268–284 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, S., Li, Y., Wang, Z.: A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application. Neural Netw. 39, 27–39 (2013)

    Article  MATH  Google Scholar 

  15. Ding, F., Chen, T.: Gradient based iterative algorithms for solving a class of matrix equations. IEEE Trans. Autom. Control 50, 1216–1221 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, Q.: Theoretical and computational issues of optimal control for distributed Hopfield neural network equations with diffusion term. J. Comput. Appl. Math. 29, 890–911 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Jin, L., Li, S., Luo, X., Li, Y., Qin, B.: Neural dynamics for cooperative control of redundant robot manipulators. IEEE Trans. Ind. Inf. https://doi.org/10.1109/TII.2018.2789438 (2018)

  18. Jin, L., Li, S., La, H., Luo, X.: Manipulability optimization of redundant manipulators using dynamic neural networks. IEEE Trans. Ind. Electron. 64, 4710–4720 (2017)

    Article  Google Scholar 

  19. Schilders, W.H.A., Meijer, P.B.L., Ciggaar, E.: Behavioural modelling using the MOESP algorithm, dynamic neural networks and the Bartels-Stewart algorithm. Appl. Numer. Math. 58, 1972–1993 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Xia, Y., Feng, G., Wang, J.: A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations. Neural Netw. 17, 1003–1015 (2004)

    Article  MATH  Google Scholar 

  21. Liu, Q., Wang, J.: Finite-time convergent recurrent neural network with a hard-limiting activation function for constrained optimization with piecewise-linear objective functions. IEEE Trans. Neural Netw. 22, 601–613 (2011)

    Article  Google Scholar 

  22. Kennedy, M.P., Chua, L.O.: Neural networks for nonlinear programming. IEEE Trans. Circ. Syst. 35, 554–562 (1988)

    Article  MathSciNet  Google Scholar 

  23. Zhang, Y., Wang, J.: A dual neural network for convex quadratic programming subject to linear equality and inequality constraints. Phys. Lett. A 298, 271–278 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, S., Li, Y.: Nonlinearly activated neural network for solving time-varying complex Sylvester equation. IEEE Trans. Cybern. 44, 1397–1407 (2014)

    Article  Google Scholar 

  25. Guo, D., Nie, Z., Yan, L.: Theoretical analysis, numerical verification and geometrical representation of new three-step DTZD algorithm for time-varying nonlinear equations solving. Neurocomputing 214, 516–526 (2016)

    Article  Google Scholar 

  26. Jin, L., Li, S.: Distributed task allocation of multiple robots: a control perspective. IEEE Trans. Syst. Man Cybern. Syst. https://doi.org/10.1109/TSMC.2016.2627579 (2017)

  27. Zhang, Y., Ge, S.: Design and analysis of a general recurrent neural network model for time-varying matrix inversion. IEEE Trans. Neural Netw. 16, 1477–1490 (2005)

    Article  Google Scholar 

  28. Miao, P., Shen, Y., Huang, Y., Wang, Y.: Solving time-varying quadratic programs based on finite-time Zhang neural networks and their application to robot tracking. Neural Comput. Appl. 26, 693–703 (2015)

    Article  Google Scholar 

  29. Jin, L., Zhang, Y., Li, S.: Integration-enhanced Zhang neural network for real-time-varying matrix inversion in the presence of various kinds of noises. IEEE Trans. Neural Netw. Learn. Syst. 27, 2615–2627 (2016)

    Article  Google Scholar 

  30. Zhang, Y., Yi, C.: Zhang Neural Networks and Neural-Dynamic Method. Nova, New York (2011)

    Google Scholar 

  31. Xiao, L.: A nonlinearly activated neural dynamics and its finite-time solution to time-varying nonlinear equation. Neurocomputing 173, 1983–1988 (2016)

    Article  Google Scholar 

  32. Guo, D., Lin, X., Su, Z., Sun, S., Huang, Z.: Design and analysis of two discrete-time ZD algorithms for time-varying nonlinear minimization. Numer. Algor. https://doi.org/10.1007/s11075-017-0302-4 (2017)

  33. Jin, L., Zhang, Y.: Continuous and discrete Zhang dynamics for real-time varying nonlinear optimization. Numer. Algor. 73, 115–140 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, Y., Li, Z., Guo, D., Ke, Z., Chen, P.: Discrete-time ZD, GD and NI for solving nonlinear time-varying equations. Numer. Algor. 64, 721–740 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, Y., Xiao, L., Ruan, G., Li, Z.: Continuous and discrete time Zhang dynamics for time-varying 4th root finding. Numer. Algor. 57, 35–51 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, Y., Jin, L., Guo, D., Yin, Y., Chou, Y.: Taylor-type 1-step-ahead numerical differentiation rule for first-order derivative approximation and ZNN discretization. J. Comput. Appl. Math. 273, 29–40 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, Y., Chou, Y., Chen, J., Zhang, Z., Xiao, L.: Presentation, error analysis and numerical experiments on a group of 1-step-ahead numerical differentiation formulas. J. Comput. Appl. Math. 239, 406–414 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mao, M., Li, J., Jin, L., Li, S., Zhang, Y.: Enhanced discrete-time Zhang neural network for time-variant matrix inversion in the presence of bias noises. Neurocomputing 207, 220–230 (2016)

    Article  Google Scholar 

  39. Liao, B., Zhang, Y.: Different complex ZFs leading to different complex ZNN models for time-varying complex generalized inverse matrices. IEEE Trans. Neural Netw. Learn. Syst. 25, 1621–1631 (2014)

    Article  Google Scholar 

  40. Guo, D., Zhang, Y.: Zhang neural network, Getz-Marsden dynamic system, and discrete-time algorithms for time-varying matrix inversion with application to robots’ kinematic control. Neurocomputing 97, 22–32 (2012)

    Article  Google Scholar 

  41. Getz, N.H., Marsden, J.E.: Dynamical methods for polar decomposition and inversion of matrices. Linear Algebra Appl. 258, 311–343 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mathews, J.H., Fink, K.D.: Numerical Methods Using MATLAB. Prentice-hall, Inc, Englewood (2005)

    Google Scholar 

  43. Engeln-Müllges, G., Uhlig, F.: Numerical Algorithms with C. Springer, New York (1996)

    Book  MATH  Google Scholar 

  44. Suli, E., Mayers, D.F.: An Introduction to Numerical Analysis. Cambridge University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  45. Zhang, Y., Li, F., Yang, Y., Li, Z.: Different Zhang functions leading to different Zhang-dynamics models illustrated via time-varying reciprocal solving. Appl. Math. Modell. 36, 4502–4511 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang, Y., Ma, W., Cai, B.: From Zhang neural network to Newton iteration for matrix inversion. IEEE Trans. Circ. Syst. Regul. Pap. 56, 1405–1415 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The work is supported by the National Natural Science Foundation of China (with numbers 61473323), by the Foundation of Key Laboratory of Autonomous Systems and Networked Control, Ministry of Education, China (with number 2013A07), and also by the Laboratory Open Fund of Sun Yat-sen University (with number 20160209). Kindly note that all authors of the paper are jointly of the first authorship and jointly of the corresponding authorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingzhi Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Mao, M., Uhlig, F. et al. A 5-instant finite difference formula to find discrete time-varying generalized matrix inverses, matrix inverses, and scalar reciprocals. Numer Algor 81, 609–629 (2019). https://doi.org/10.1007/s11075-018-0564-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0564-5

Keywords

Navigation