Skip to main content
Log in

Note on error bounds for linear complementarity problems of Nekrasov matrices

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

García-Esnaola and Peña (Numer. Algor. 67, 655–667, 2014) presented an error bound involving a parameter for linear complementarity problems of Nekrasov matrices. This bound is not effective in some cases because it tends to infinity when the involved parameter tends to zero. In this paper, the optimal value of this error bound is determined completely by using the monotonicity of functions of this parameter. Numerical examples are given to verify the corresponding results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berman, A., Plemmons, R.J.: Nonnegative Matrix in the Mathematical Sciences. SIAM Publisher, Philadelphia (1994)

    Book  Google Scholar 

  2. Chen, T.T., Li, W., Wu, X., Vong, S.: Error bounds for linear complementarity problems of MB-matrices. Numer. Algor. 70(2), 341–356 (2015)

    Article  MathSciNet  Google Scholar 

  3. Chen, X.J., Xiang, S.H.: Computation of error bounds for P-matrix linear complementarity problems. Math. Program., Ser A 106, 513–525 (2006)

    Article  MathSciNet  Google Scholar 

  4. Chen, X.J., Xiang, S.H.: Perturbation bounds of P-matrix linear complementarity problems. SIAM J. Optim. 18, 1250–1265 (2007)

    Article  MathSciNet  Google Scholar 

  5. Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, San Diego (1992)

    MATH  Google Scholar 

  6. Peña, J.M.: A class of P-matrices with applications to the localization of the eigenvalues of a real matrix. SIAM J. Matrix Anal. Appl. 22, 1027–1037 (2001)

    Article  MathSciNet  Google Scholar 

  7. Dai, P.F.: Error bounds for linear complementarity problems of DB-matrices. Linear Algebra Appl. 434, 830–840 (2011)

    Article  MathSciNet  Google Scholar 

  8. Dai, P.F., Li, Y.T., Lu, C.J.: Error bounds for linear complementarity problems for SB-matrices. Numer Algor. 61, 121–139 (2012)

    Article  MathSciNet  Google Scholar 

  9. García-Esnaola, M., Peña, J.M.: Error bounds for linear complementarity problems for B-matrices. Appl. Math Lett. 22, 1071–1075 (2009)

    Article  MathSciNet  Google Scholar 

  10. García-Esnaola, M., Peña, J.M.: A comparison of error bounds for linear complementarity problems of H-matrices. Linear Algebra Appl. 433, 956–964 (2010)

    Article  MathSciNet  Google Scholar 

  11. García-Esnaola, M., Peña, J.M.: Error bounds for linear complementarity problems of Nekrasov matrices. Numer Algor. 67, 655–667 (2014)

    Article  MathSciNet  Google Scholar 

  12. García-Esnaola, M., Peña, J.M.: B-Nekrasov matrices and error bounds for linear complementarity problems. Numer Algor. 72, 435–445 (2016)

    Article  MathSciNet  Google Scholar 

  13. García-Esnaola, M., Peña, J.M.: On the asymptotic optimality of error bounds for some linear complementarity problems. Numer. Algor. 80, 521–532 (2019)

    Article  MathSciNet  Google Scholar 

  14. Li, W.: On Nekrasov matrices. Linear Algebra Appl. 281, 87–96 (1998)

    Article  MathSciNet  Google Scholar 

  15. Li, C.Q., Li, Y.T.: Note on error bounds for linear complementarity problems for B-matrices. Appl. Math. Lett. 57, 108–113 (2016)

    Article  MathSciNet  Google Scholar 

  16. Li, C.Q., Dai, P.F., Li, Y.T.: New error bounds for linear complementarity problems of Nekrasov matrices and B-Nekrasov matrices. Numer. Algor. 74, 997–1009 (2017)

    Article  MathSciNet  Google Scholar 

  17. Murty, K.G.: Linear Complementarity, Linear and Nonlinear Programming. Heldermann Verlag, Berlin (1988)

    MATH  Google Scholar 

  18. Wang, F., Sun, D.: New error bound for linear complementarity problems for B-matrices. Linear and Multilinear Algebra 66(11), 2156–2167 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the associate editor Prof. Xiaojun Chen and anonymous referees for their valuable suggestions, and also thank Mengting Gan for her discussion on 32 cases.

The first author is supported partly by the Applied Basic Research Programs of Science and Technology Department of Yunnan Province [grant number 2018FB001], Outstanding Youth Cultivation Project for Yunnan Province [grant number 2018YDJQ021], Program for Excellent Young Talents in Yunnan University, and CAS ’Light of West China’ Program. His work was finished, while he was a visiting scholar at Shanghai Key Laboratory of Contemporary Applied Mathematics of Fudan University during 2017 and 2018.

The third author is supported partly by National Natural Science Foundations of China [grant number 11461080].

The fourth author is supported partly by National Natural Science Foundations of China [grant number 11861077].

The fifth author is supported partly by National Natural Science Foundations of China [grant number 11771099] and Shanghai Municipal Education Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Wei.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: 32 cases

figure a

Appendix B: The values of \(\inf \limits _{\varepsilon \in (0,\tilde {w}_0) } f(\varepsilon )\) and some related notations

figure b
figure c

In the table above, some related notations are listed as follows:

$$\begin{array}{ll} \rho_{bnd}^{(1)}:=\frac{\frac{h_{n}(M)}{m_{nn}}+\tilde{s}_{i_{n-1}}}{\tilde{s}_{i_{n-1}}m_{nn}},&\rho_{bnd}^{(2)}:=\frac{h_{n}(M)+w_{i_{n-1}} }{m_{nn}w_{i_{n-1}}}, \\ \rho_{bnd}^{(3)}:= \frac{\frac{h_{n}(M)}{m_{nn}}+\tilde{s}_{i_{n-1}}}{ \min\limits_{1\leq i\leq n-1} \{\bar{s}_{i}- \tilde{s}_{i_{n-1}} |m_{in}|\}},&\rho_{bnd}^{(4)}:=\frac{ \frac{h_{n}(M)}{m_{nn}}+\tilde{s}_{i_{n-1}}}{w_{i_{n-1}}},\\ \rho_{bnd}^{(5)}:=\frac{1}{m_{nn}-h_{n}(M)},&\rho_{bnd}^{(6)}:=\frac{w_{i_{1}}}{\tilde{s}_{i_{n-1}} m_{nn}},\\ \rho_{bnd}^{(7)}:=\frac{w_{i_{1}}}{\frac{h_{n}(M)}{m_{nn}}+\tilde{s}_{i_{n-1}}},&\rho_{bnd}^{(8)}:=\frac{w_{i_{1}}}{w_{i_{n-1}}},\\\rho_{bnd}^{(9)}:=\frac{w_{i_{1}}}{\min\limits_{1\leq i\leq n-1}\{\bar{s}_{i}-\tilde{s}_{i_{n-1}} |m_{in}|\}},&\rho_{bnd}^{(10)}:=\frac{w_{i_{1}}}{\min\limits_{1\leq i\leq n-1}\frac{\bar{s}_{i}-\frac{h_{n}(M)}{m_{nn}}}{1+|m_{in}|}+\frac{h_{n}(M)}{m_{nn}}},\\ \rho_{bnd}^{(11)}:=\frac{w_{i_{1}}}{\min\limits_{1\leq i\leq n-1} \{\bar{s}_{i}-(w_{i_{n-1}}-\frac{h_{n}(M)}{m_{nn}}) |m_{in}|\}},&\rho_{bnd}^{(12)}=\frac{ w_{i_{1}}}{\min\limits_{1\leq i\leq n-1} \{\bar{s}_{i}-(w_{i_{1}}-\frac{h_{n}(M)}{m_{nn}}) |m_{in}|\}},\\ \rho_{bnd}^{(13)}=\frac{w_{i_{1}}}{m_{nn}w_{i_{n-1}}-h_{n}(M)},&\rho_{bnd}^{(14)}=\frac{w_{i_{1}}}{m_{nn}w_{i_{1}}-h_{n}(M)},\\ \rho_{bnd}^{(15)}=\frac{w_{i_{n-1}}-h_{n}(M)}{\min\limits_{1\leq i\leq n-1 } \{m_{nn}\bar{s}_{i}-w_{i_{n-1}}|m_{in}|\}},&\rho_{bnd}^{(16)}=\frac{m_{nn}w_{i_{1}}}{w_{i_{n-1}}+h_{n}(M)} \end{array} $$

and

$$\rho_{bnd}^{(17)}=\frac{m_{nn}w_{i_{1}}}{\min\limits_{1\leq i\leq n-1 } \{{m_{nn}\bar{s}_{i}-w_{i_{n-1}}}|m_{in}|\}}.$$

Remark here that for a given Nekrasov matrix M, each \(\rho _{bnd}^{(i)}\) for i = 1, 2,…, 17 depends only on the entries of M, and thus is computable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Yang, S., Huang, H. et al. Note on error bounds for linear complementarity problems of Nekrasov matrices. Numer Algor 83, 355–372 (2020). https://doi.org/10.1007/s11075-019-00685-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00685-y

Keywords

Navigation