Skip to main content
Log in

The dynamical analysis of a uniparametric family of three-point optimal eighth-order multiple-root finders under the Möbius conjugacy map on the Riemann sphere

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we present dynamical viewpoints under the Möbius conjugacy map on the Riemann sphere for a uniparametric family of optimal eighth-order multiple-root finders. Various conjugacy properties are investigated including the invariance of the fixed point and its multiplier, which enables the family of iterative methods to trace along the consistent orbits in position. The parameter spaces and dynamical planes are studied and illustrated to visualize the periodic components and their geometric properties. Both theoretical and computational analyses along with a numerical algorithm are carried out regarding the bifurcation points of satellite and primitive components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ahlfors, L.V.: Complex Analysis. McGraw-Hill Book, Inc. (1979)

  2. Beardon, A.F.: Iteration of Rational Functions. Springer, New York (1991)

    Book  Google Scholar 

  3. Ainsworth, J., Dawson, M., Pianta, J., Warwick, J.: The Farey Sequence, http://www.maths.ed.ac.uk/aar/fareyproject.pdf (2012)

  4. Amat, S., Busquier, S., Plaza, S.: Review of some iterative root-finding methods from a dynamical point of view. Scientia 10, 3–35 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Amat, S., Busquier, S., Plaza, S.: Dynamics of the King and Jarratt iterations. Aeq. Math. 69, 212–223 (2005)

    Article  MathSciNet  Google Scholar 

  6. Argyros, I.K., Magreñán, A.́A.: On the convergence of an optimal fourth-order family of methods and its dynamics. Appl. Math. Comput. 252, 336–346 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Behl, R., Cordero, A., Motsa, S., Torregrosa, J.: On developing fourth-order optimal families of methods for multiple roots and their dynamics. Appl. Math. Comput. 265, 520–532 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Behl, R., Cordero, A., Motsa, S., Torregrosa, J., Kanwar, V.: An optimal fourth-order family of methods for multiple roots and its dynamics. Numer. Algor. 71, 775–796 (2016)

    Article  MathSciNet  Google Scholar 

  9. Blanchard, P.: The dynamics of Newton’s method. In: Proceedings of Symposia in Applied Mathematics, vol. 49, pp 139–154. American Mathematical Society (1994)

  10. Campos, B., Cordero, A., Torregrosa, J., Vindel, P.: Orbits of period two in the family of a multipoint variant of Chebyshev-Halley family. Numer. Algor. 73, 141–156 (2016)

    Article  MathSciNet  Google Scholar 

  11. Chicharro, F., Cordero, A., Gutiérrez, J., Torregrosa, J.: Complex dynamics of derivative-free methods for nonlinear equations. Appl. Math. Comput. 219, 7023–7035 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Chicharro, F., Cordero, A., Torregrosa, J.: Drawing dynamical and parameters planes of iterative families and methods. Sci. World J. 2013(780153), 1–11 (2013)

    Article  Google Scholar 

  13. Chun, C., Lee, M.Y., Neta, B., Dz̆unić, J.: On optimal fourth-order iterative methods free from second derivative and their dynamics. Appl. Math. Comput. 218, 6427–6438 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Chun, C., Neta, B., Kim, S.: On Jarratt’s family of optimal fourth-order iterative methods and their dynamics. Fractals 22, 1450013 (2014). https://doi.org/10.1142/S0218348X14500133

    Article  MathSciNet  Google Scholar 

  15. Cordero, A., García-Maimó, J., Torregrosa, J., Vassileva, M.P., Vindel, P.: Chaos in King’s iterative family. Appl. Math. Lett. 26, 842–848 (2013)

    Article  MathSciNet  Google Scholar 

  16. Devaney, R.L.: Complex dynamical systems: the mathematics behind the Mandelbrot and Julia sets. Proc. Symposia Appl. Math. ISSN 0160–7634(49), 1–29 (1994)

    Google Scholar 

  17. Geum, Y.H., Kim, Y.I.: Cubic convergence of parameter-controlled Newton-secant method for multiple zeros. J. Comput. Appl. Math. 233(4), 931–937 (2009)

    Article  MathSciNet  Google Scholar 

  18. Geum, Y.H., Kim, Y.I.: A two-parameter family of fourth-order iterative methods with optimal convergence for multiple zeros. J. Appl. Math. 2013(369067), 1–7 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Geum, Y.H., Kim, Y.I., Neta, B.: Constructing a family of optimal eighth-order modified Newton-type multiple-zero finders along with the dynamics behind their purely imaginary extraneous fixed points. J. Comput. Appl. Math. 333, 131–156 (2018)

    Article  MathSciNet  Google Scholar 

  20. Geum, Y.H., Kim, Y.I., Magreñán, Á.A.: A study of dynamics via Möbius conjugacy map on a family of sixth-order modified Newton-like multiple-zero finders with bivariate polynomial weight functions. J. Comput. Appl. Math. 344, 608–623 (2018)

    Article  MathSciNet  Google Scholar 

  21. Gulick, D: Encounters with Chaos. McGraw-Hill Inc (1992)

  22. Hinich, V.: Riemann surfaces, http://math.haifa.ac.il/hinich/RSlec/lec1.pdf

  23. Hörmander, L.: An Introduction to Complex Analysis in Several Variables. North-Holland Publishing Company (1973)

  24. Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Mach. 21, 643–651 (1974)

    Article  MathSciNet  Google Scholar 

  25. Lipschutz, S.: Theory and Problems of General Topology, Schaum’s Outline Series. McGraw-Hill Inc (1965)

  26. Magreñán, A.́A.: Different anomalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 233, 29–38 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Magreñán, A.́ A., Gutíerrez, J.M.: Real dynamics for damped Newton’s method applied to cubic polynomials. J. Comput. Appl. Math. 275, 527–538 (2015)

    Article  MathSciNet  Google Scholar 

  28. Neta, B., Scott, M., Chun, C.: Basin attractors for various methods for multiple roots. Appl. Math. Comput. 218, 5043–5066 (2012)

    MathSciNet  MATH  Google Scholar 

  29. García-Olivo, M., Gutíerrez, J.M., Magreñán, A.́A.: A complex dynamical approach of Chebyshev’s method. SeMA 71, 57–68 (2015)

    Article  MathSciNet  Google Scholar 

  30. Peitgen, H., Richter, P: The Beauty of Fractals. Springer (1986)

  31. Vazquez-Lozano, J.E., Cordero, A., Torregrosa, J.: Dynamical analysis on cubic polynomials of Damped Traubs method for approximating multiple roots. Appl. Math. Comput. 328, 82–99 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Wang, X., Zhang, T., Qinc, Y.: Efficient two-step derivative-free iterative methods with memory and their dynamics. Int. J. Comput. Math. 93, 1423–1446 (2016)

    Article  MathSciNet  Google Scholar 

  33. Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media (2003)

  34. Zafar, F., Cordero, A., Sultana, S., Torregrosa, J.: Optimal iterative methods for finding multiple roots of nonlinear equations using weight functions and dynamics. J. Comput. Appl. Math. 342, 352–374 (2018)

    Article  MathSciNet  Google Scholar 

  35. Zhou, X., Chen, X., Song, Y.: Constructing higher-order methods for obtaining the multiple roots of nonlinear equations. J. Comput. Appl. Math. 235, 4199–4206 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Ik Kim.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, MY., Kim, Y.I. The dynamical analysis of a uniparametric family of three-point optimal eighth-order multiple-root finders under the Möbius conjugacy map on the Riemann sphere. Numer Algor 83, 1063–1090 (2020). https://doi.org/10.1007/s11075-019-00716-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00716-8

Keywords

Mathematics Subject Classification (2010)

Navigation