Skip to main content
Log in

A class of upwind methods based on generalized eigenvectors for weakly hyperbolic systems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this article, a class of upwind schemes is proposed for systems, each of which yields an incomplete set of linearly independent eigenvectors. The theory of Jordan canonical forms is used to complete such sets through the addition of generalized eigenvectors. A modified Burgers’ system and its extensions generate δ,δ, δ,⋯,δn waves as solutions. The performance of flux difference splitting-based numerical schemes is examined by considering various numerical examples. Since the flux Jacobian matrix of pressureless gas dynamics system also produces an incomplete set of linearly independent eigenvectors, a similar framework is adopted to construct a numerical algorithm for a pressureless gas dynamics system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Berthon, C., Breuß, M., Titeux, M.O.: A relaxation scheme for the approximation of the pressureless Euler equations. Numer. Methods Partial Differ. Equ. 22, 484–505 (2006). https://doi.org/10.1002/num.20108

    Article  MathSciNet  Google Scholar 

  2. Bouchut, F., James, F.: Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness. Comm. Partial Differ. Equ. 24(11-12), 2173–2189 (1999). https://doi.org/10.1080/03605309908821498

    Article  MathSciNet  Google Scholar 

  3. Bouchut, F., Jin, S., Li, X.: Numerical approximations of pressureless and isothermal gas dynamics. SIAM J. Numer. Anal. 41(1), 135–158 (2003). https://doi.org/10.1137/S0036142901398040

    Article  MathSciNet  Google Scholar 

  4. Cockburn, B.: Discontinuous Galerkin methods for convection-dominated problems, High-order methods for computational physics. Lect. Notes Comput. Sci. Eng. 9, 69–224 (1999). https://doi.org/10.1007/978-3-662-03882-6_2

    Article  Google Scholar 

  5. Cockburn, B., Karniadakis, G.E., Shu, C.W.: The development of discontinuous Galerkin methods, Discontinuous Galerkin methods (Newport, RI, 1999). Lect. Notes Comput. Sci. Eng. 11, 3–50 (2000). https://doi.org/10.1007/978-3-642-59721-3_1

    Article  Google Scholar 

  6. Engquist, B., Runborg, O.: Multi-phase computations in geometrical optics. J. Comput. Appl. Math. 74, 175–192 (1996). https://doi.org/10.1016/0377-0427(96)00023-4

    Article  MathSciNet  Google Scholar 

  7. Friedrichs, K.O.: Symmetric hyperbolic linear differential equations. Comm. Pure Appl. Math. 7, 345–392 (1954). https://doi.org/10.1002/cpa.3160070206

    Article  MathSciNet  Google Scholar 

  8. Garg, N.K., Junk, M., Rao, S., Sekhar, M.: An upwind method for genuine weakly hyperbolic systems, arXiv:http://arXiv.org/abs/1703.08751 (2017)

  9. Garg, N.K., Rao, S., Sekhar, M.: An Approximate Riemann Solver for Convection-Pressure Split Euler Equations Using Jordan Canonical Forms, arXiv:http://arXiv.org/abs/1607.00947v1 (2016)

  10. Garg, N.K., Rao, S., Sekhar, M.: Use of Jordan forms for convection-pressure split Euler solvers. arXiv:http://arXiv.org/abs/1607.00947v5 (2017)

  11. Harten, A.: On a class of high resolution total-variation-stable finite-difference schemes. SIAM J. Numer. Anal. 21, 1–23 (1984). https://doi.org/10.1137/0721001

    Article  MathSciNet  Google Scholar 

  12. Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions. II. Entropy production at shocks. J. Comput. Phys. 228, 5410–5436 (2009). https://doi.org/10.1016/j.jcp.2009.04.021

    Article  MathSciNet  Google Scholar 

  13. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996). https://doi.org/10.1006/jcph.1996.0130

    Article  MathSciNet  Google Scholar 

  14. Jiang, G.S., Tadmor, E.: Nonoscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 19, 1892–1917 (1998). https://doi.org/10.1137/S106482759631041X

    Article  MathSciNet  Google Scholar 

  15. Joseph, K.T.: A Riemann problem whose viscosity solutions contain δ-measures. Asymptot. Anal. 7, 105–120 (1993)

    Article  MathSciNet  Google Scholar 

  16. Joseph, K.T.: Explicit generalized solutions to a system of conservation laws. Proc. Indian Acad. Sci. Math. Sci. 109(4), 401–409 (1999). https://doi.org/10.1007/BF02838000

    Article  MathSciNet  Google Scholar 

  17. Joseph, K.T., Sahoo, M.R.: Vanishing viscosity approach to a system of conservation laws admitting δ waves. Commun. Pure Appl. Anal. 12 (5), 2091–2118 (2013). https://doi.org/10.3934/cpaa.2013.12.2091

    Article  MathSciNet  Google Scholar 

  18. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Anal. 7, 159–193 (1954). https://doi.org/10.1002/cpa.3160070112

    Article  MathSciNet  Google Scholar 

  19. LeVeque, R.J.: The dynamics of pressureless dust clouds and delta waves. J. Hyperbolic Differ. Equ. 1 (2), 315–327 (2004). https://doi.org/10.1142/S0219891604000135

    Article  MathSciNet  Google Scholar 

  20. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994). https://doi.org/10.1006/jcph.1994.1187

    Article  MathSciNet  Google Scholar 

  21. Liu, X.D., Tadmor, E.: Third order nonoscillatory central scheme for hyperbolic conservation laws. Numer. Math. 79, 397–425 (1998). https://doi.org/10.1007/s002110050345

    Article  MathSciNet  Google Scholar 

  22. Panov, E.Y., Shelkovich, V.M.: δ-shock waves as a new type of solutions to systems of conservation laws. J. Diff. Equat. 228, 49–86 (2006). https://doi.org/10.1016/j.jde.2006.04.004

    Article  MathSciNet  Google Scholar 

  23. Parés, C., Castro, M.: On the well-balance property of Roe’s method for nonconservative hyperbolic systems, Applications to shallow-water systems. M2AN Math. Model. Numer. Anal. 38, 821–852 (2004). https://doi.org/10.1051/m2an:2004041

    Article  MathSciNet  Google Scholar 

  24. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981). https://doi.org/10.1016/0021-9991(81)90128-5

    Article  MathSciNet  Google Scholar 

  25. Rusanov, V.V.E.: The calculation of the interaction of non-stationary shock waves with barriers, ž. vyčisl. Mat. i Mat Fiz. 1, 267–279 (1961)

    MathSciNet  Google Scholar 

  26. Shelkovich, V.M.: The Riemann problem admitting δ-, δ-shocks, and vacuum states (the vanishing viscosity approach). J. Diff. Equat. 231(2), 459–500 (2006). https://doi.org/10.1016/j.jde.2006.08.003

    Article  MathSciNet  Google Scholar 

  27. Sheng, W., Zhang, T.: The Riemann problem for the transportation equations in gas dynamics. Mem. Amer. Math. Soc. 137, viii+ 77 (1999). https://doi.org/10.1090/memo/0654

    MathSciNet  MATH  Google Scholar 

  28. Smith, T.A., Petty, D.J., Pantano, C.: A Roe-like numerical method for weakly hyperbolic systems of equations in conservation and non-conservation form. J. Comput. Phys. 316, 117–138 (2016). https://doi.org/10.1016/j.jcp.2016.04.006

    Article  MathSciNet  Google Scholar 

  29. Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws I. Math. Comp. 49, 91–103 (1987). https://doi.org/10.2307/2008251

    Article  MathSciNet  Google Scholar 

  30. Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003). https://doi.org/10.1017/S0962492902000156

    Article  MathSciNet  Google Scholar 

  31. Toro, E.F.: Shock-capturing methods for free-surface shallow flows. Wiley, New York (2001)

    MATH  Google Scholar 

  32. Toro, E.F., Vázquez-Cendón, M.E.: Flux splitting schemes for the Euler equations. Comput. Fluids 70, 1–12 (2012). https://doi.org/10.1016/j.compfluid.2012.08.023

    Article  MathSciNet  Google Scholar 

  33. Yang, Y., Wei, D., Shu, C.W.: Discontinuous Galerkin method for Krause’s consensus models and pressureless Euler equations. J. Comput. Phys. 252, 109–127 (2013). https://doi.org/10.1016/j.jcp.2013.06.015

    Article  MathSciNet  Google Scholar 

  34. Zel’Dovich, Y.B.: Gravitational instability: an approximate theory for large density perturbations. Astron. Astrophys. 5, 84–89 (1970)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. G. D. Veerappa Gowda, Centre for Applicable Mathematics, Tata Institute of Fundamental Research, Bangalore, and Prof. S. V. Raghurama Rao, Department of Aerospace Engineering, Indian Institute of Science, Bangalore, for the fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kumar Garg.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, N.K. A class of upwind methods based on generalized eigenvectors for weakly hyperbolic systems. Numer Algor 83, 1091–1121 (2020). https://doi.org/10.1007/s11075-019-00717-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00717-7

Keywords

Mathematics Subject Classification (2010)

Navigation