Skip to main content
Log in

A posteriori error estimates of hp spectral element methods for optimal control problems with L2-norm state constraint

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we investigate a distributed optimal control problem governed by elliptic partial differential equations with L2-norm constraint on the state variable. Firstly, the control problem is approximated by hp spectral element methods, which combines the advantages of the finite element methods with spectral methods; then, the optimality conditions of continuous system and discrete system are presented, respectively. Next, hp a posteriori error estimates are derived for the coupled state and control approximation. In the end, a projection gradient iterative algorithm is given, which solves the optimal control problems efficiently. Numerical experiments are carried out to confirm that the numerical results are in good agreement with the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babuška, I., Suri, M.: The hp version of the finite element method with quasiuniform meshes. Math. Model. Numer. Anal. 21, 199–238 (1987)

    MathSciNet  MATH  Google Scholar 

  2. Benedix, O., Vexler, B.: A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints. Comput. Optim. Appl. 44(1), 3–25 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Butt, M. M., Yuan, Y.: A full multigrid method for distributed control problems constrained by Stokes equations. Numer. Math. Theor. Meth. Appl. 10, 639–655 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Canuto, C., Hussaini, M. Y., Quarteroni, A., et al: Spectral Methods in Fluid Dynamics. Springer, Berlin (1988)

    MATH  Google Scholar 

  5. Casas, E.: Control of an elliptic problem with pointwise state constraints. SIAM J. Control. Optimal. 24, 1309–1322 (1986)

    MathSciNet  MATH  Google Scholar 

  6. Casas, E., Tröltzsch, F.: Second order necessary optimality conditions for some state-constrained control problems of semilinear elliptic equations. Appl. Math. Optim. 39, 2524–2550 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Chen, Y., Huang, F.: Galerkin spectral approximation of elliptic optimal control problems with H1 -norm state constraint. J. Sci. Comput. 67(1), 65–83 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Chen, Y., Huang, F.: Spectral method approximation of flow optimal control problems with H 1-norm state constraint. Numer. Math. Theory. Meth. Appl. 10(3), 614–638 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Chen, Y., Lin, Y.: A posteriori error estimates for hp finite element solutions of convex optimal control problems. J. Comput. Appl. Math. 23, 3435–3454 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Chen, Y., Yi, N., Liu, W.: A Legendre-Galerkin spectral method for optimal control problems governed by elliptic equations. SIAM J. Numer. Anal. 46 (5), 2254–2275 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Chen, Y., Huang, F., Yi, N., Liu, W.: A Legendre-Galerkin spectral method for optimal control problems governed by Stokes equations. SIAM J. Numer. Anal. 49(4), 1625–1648 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Chen, Y., Huang, Y., Liu, W., et al.: A mixed multiscale finite element method for convex optimal control problems with oscillating coefficients. Comput. Math. Appl. 70(4), 297–313 (2015)

    MathSciNet  Google Scholar 

  13. Deckelnick, K., Hinze, M.: Convergence of a finite element approximation to a state-constrained elliptic control problem. SIAM J Numer. Anal. 45(5), 1937–1953 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Du, N., Ge, L., Liu, W.: Adaptive finite element approximation for an elliptic optimal control problem with both pointwise and integral control constraints. J. Sci. Comput. 60(1), 160–183 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Gong, W., Hinze, M.: Error estimates for parabolic optimal control problems with control and state constraints. Comput. Optim. Appl. 56(1), 131–151 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Gong, W., Liu, W., Yan, N.: A posteriori error estimates of hp-FEM for optimal control problems. Int. J. Numer. Anal. Model. 8(1), 48–69 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Gottlieb, D., Orszag, S. A.: Numerical analysis of spectral methods: theory and applications. for. Industr. Appl. Math. 45(4), 969–970 (1977)

    MATH  Google Scholar 

  18. Guo, B. Y.: Spectral Methods and Their Applications. World Scientific, Singapore (1998)

    MATH  Google Scholar 

  19. Guo, B. Y.: Error estimation of Hermite spectral method for nonlinear partial differential equations. Math. Comput. 68(227), 1067–1078 (1999)

    MathSciNet  MATH  Google Scholar 

  20. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Springer, Netherlands (2009)

    MATH  Google Scholar 

  21. Hou, T.L., Liu, C.M., Chen, H.B.: Fully discrete H1-Galerkin mixed finite element methods for parabolic optimal control problems. Numer. Math. Theor. Meth. Appl. 12, 134–153 (2019)

    MATH  Google Scholar 

  22. Huang, F., Chen, Y.: Error estimates for spectral approximation of elliptic control problems with integral state and control constraints. Comput. Math. Appl. 68(8), 789–803 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Leng, H., Chen, Y.: Convergence and quasi-optimality of an adaptive finite element method for optimal control problems on L2 errors. J. Sci. Comput. 73(1), 1–21 (2017)

    MathSciNet  Google Scholar 

  24. Leykekhman, D., Meidner, D., Vexler, B.: Optimal error estimates for finite element discretization of elliptic optimal control problems with finitely many pointwise state constraints. Comput. Optim. Appl. 55(3), 769–802 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Li, R., Liu, W., Yan, N.: A posteriori error estimates of recovery type for distributed convex optimal control problems. J. Sci. Comput. 33(2), 155–182 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Lions, J. L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    MATH  Google Scholar 

  27. Liu, W., Yan, N: A posteriori error estimates for distributed convex optimal control problems. Adv. Comput. Math. 15(1–4), 285–309 (2001)

    MathSciNet  MATH  Google Scholar 

  28. Liu, W., Yan, N: A posteriori error estimates for control problems governed by stokes equations. SIAM J. Numer Anal. 40(5), 1850–1869 (2003)

    MathSciNet  MATH  Google Scholar 

  29. Liu, W., Yan, N.: Adaptive Finite Element Methods for Optimal Control Governed by PDEs. Scientific Press, Beijing (2008)

    Google Scholar 

  30. Liu, W., Yang, D., Yuan, L., Ma, C.: Finite element approximations of an optimal control problem with integral state constraint. SIAM J. Numer. Anal. 48, 1163–1185 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Liu, C.M., Hou, T.L., Yang, Y: Superconvergence of H1-Galerkin mixed finite element methods for elliptic optimal control problems. East. Asia. J. Appl. Math. 9, 87–101 (2019)

    Google Scholar 

  32. Meidner, D., Vexler, B.: A priori error estimates for space-time finite element discretization of parabolic optimal control problems. SIAM J Control Optim. 47, 1301–1329 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Melenk, J: hp-interpolation of nonsmooth functions and an application to hp-a posteriori error estimation. SIAM J. Numer. Anal. 43, 127–155 (2005)

    MathSciNet  MATH  Google Scholar 

  34. Mozolevski, I., Süli, E., Bösing, P. R.: hp-version a priori error analysis of interior penalty discontinous Galerkin finite element approximations to the biharmonic equation. J. Sci. Comput. 30(3), 465–491 (2007)

    MathSciNet  MATH  Google Scholar 

  35. Neitzel, I., Tröltzsch, F.: On regularization methods for the numerical solution, of parabolic control problems with pointwise state constraints. ESAIM Control Optim. Calc. Var. 15(2), 81–96 (2008)

    MathSciNet  MATH  Google Scholar 

  36. Neitzel, I., Pfefferer, J., Rösch, A.: Finite element discretization of state-constrained elliptic optimal control problems with semilinear state equation. SIAM J. Control Optim. 53(2), 874–904 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Pozrikidis, C.: Introduction to Finite and Spectral Element Methods Using MATLAB. Chapman Hall/CRC, Boca Raton (2005)

    MATH  Google Scholar 

  38. Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006)

    MATH  Google Scholar 

  39. Shen, J., Wang, L. L.: Spectral approximation of the Helmholtz equation with high wave numbers. SIAM J. Numer. Anal. 43(2), 623–644 (2006)

    MathSciNet  MATH  Google Scholar 

  40. Shen, J., Tang, T., Wang, L. L.: Spectral Methods, p 41. Springer, Berlin (2011)

    Google Scholar 

  41. Trefethen, L. N: Spectral Methods in MATLAB. SIAM (2000)

  42. Tröltzsch, F.: Optimal control of partial differential equations: theory, methods and applications. SIAM J. Control. Optim. 112(2), 399 (2010)

    MATH  Google Scholar 

  43. Xu, C., Lin, Y.: Analysis of iterative methods for the viscous/inviscid coupled problem via a spectral element approximation. Int. J. Numer. Meth. Fluids 32(6), 619–646 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Xu, C., Maday, Y.: A spectral element method for the time-dependent two-dimensional Euler equations: applications to flow simulations. J. Comput. Appl. Math. 91(1), 63–85 (1998)

    MathSciNet  MATH  Google Scholar 

  45. Xu, C., Pasquetti, R.: Stabilized spectral element computations of high Reynolds number incompressible flows. J. Comput. Phys. 196(2), 680–704 (2004)

    MathSciNet  MATH  Google Scholar 

  46. Yan, N.: Superconvergence analysis and a posteriori error estimation of a finite element method for an optimal control problem governed by integral equations. Appl. Math. 54(3), 267–283 (2009)

    MathSciNet  MATH  Google Scholar 

  47. Yang, FW, Venkataraman, C, Styles, V, Madzvamuse, A: A robust and efficient adaptive multigrid solver for the optimal control of phase field formulations of geometric evolution laws. Commun. Comput. Phys. 21, 65–92 (2017)

    MathSciNet  MATH  Google Scholar 

  48. Yuan, L., Yang, D.: A posteriori error estimate of optimal control problem of PDE with integral constraint for state. J. Comput. Math. 27(4), 525–542 (2009)

    MathSciNet  MATH  Google Scholar 

  49. Zhou, J., Chen, Y., Dai, Y.: Superconvergence of triangular mixed finite elements for optimal control problems with an integral constraint. Appl. Math. Comput. 217(5), 2057–2066 (2010)

    MathSciNet  MATH  Google Scholar 

  50. Zhou, J., Yang, D.: Legendre-Galerkin spe7ctral methods for optimal control problems with integral constraint for state in one dimension. Comput. Optim. Appl. 61, 135–158 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The work is supported by the National Natural Science Foundation of China (Grant No. 11671157,11826212) and Hunan Provincial Innovation Foundation For Postgraduate (Grant No. CX2018B320)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Chen, Y. & Huang, Y. A posteriori error estimates of hp spectral element methods for optimal control problems with L2-norm state constraint. Numer Algor 83, 1145–1169 (2020). https://doi.org/10.1007/s11075-019-00719-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00719-5

Keywords

Navigation