Skip to main content
Log in

Strong convergence of an extragradient-like algorithm involving pseudo-monotone mappings

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The purpose of this paper is to introduce a new extragradient-like algorithm for solving a variational inequality problem with a pseudo-monotone and Lipschitz continuous mapping in a Hilbert space. The iterative algorithm combines inertial ideas and hybrid extragradient ideas with the Armijo-like step size rule. Strong convergence of the algorithm is obtained and numerical experiments are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Takahashi, W., Wen, C.F., Yao, J.C.: The shrinking projection method for a finite family of demimetric mappings with variational inequality problems in a Hilbert space. Fixed Point Theory 19, 407–419 (2018)

    Article  MathSciNet  Google Scholar 

  2. Zhao, X., et al.: Linear regularity and linear convergence of projection-based methods for solving convex feasibility problems. Appl. Math. Optim. 78, 613–641 (2018)

    Article  MathSciNet  Google Scholar 

  3. Zhao, J., Zong, H.: Iterative algorithms for solving the split feasibility problem in Hilbert spaces. J. Fixed Point Theory Appl. 20, 11 (2018)

    Article  MathSciNet  Google Scholar 

  4. Chang, S.S., Wen, C.F., Yao, J.C.: Common zero point for a finite family of inclusion problems of accretive mappings in Banach spaces. Optimization 67, 1183–1196 (2018)

    Article  MathSciNet  Google Scholar 

  5. Ansari, Q.H., Babu, F., Yao, J.C.: Regularization of proximal point algorithms in Hadamard manifolds. J. Fixed Point Theory Appl. 21, 25 (2019)

    Article  MathSciNet  Google Scholar 

  6. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekon. Mat. Metody 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  7. Gibali, A.: A new Bregman projection method for solving variational inequalities in Hilbert spaces. Pure Appl. Funct. Anal. 3, 403–415 (2018)

    MathSciNet  Google Scholar 

  8. Dong, Q., Jiang, D., Gibali, A.: A modified subgradient extragradient method for solving the variational inequality problem. Numer. Algor. 79, 927–940 (2018)

    Article  MathSciNet  Google Scholar 

  9. Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Methods Softw. 26, 827–845 (2011)

    Article  MathSciNet  Google Scholar 

  10. Malitsky, Y.V., Semenov, V.V.: A hybrid method without extrapolation step for solving variational inequality problems. J. Global Optim. 61, 193–202 (2015)

    Article  MathSciNet  Google Scholar 

  11. Cho, S.Y.: Strong convergence analysis of a hybrid algorithm for nonlinear operators in a Banach space. J. Appl. Appl. Comput. 8, 19–31 (2018)

    MathSciNet  Google Scholar 

  12. Shang, M.: A descent-like method for fixed points and split conclusion problems. J. Appl. Numer. Optim. 1, 91–101 (2019)

    Google Scholar 

  13. Tseng, P.: A modified forward backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000)

    Article  MathSciNet  Google Scholar 

  14. Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology. Springer, New York (1988)

    Book  Google Scholar 

  15. Khan, M.A., Yannelis, N.C.: Equilibrium Theory in Infinite Dimensional Spaces. Springer, New York (1991)

    Book  Google Scholar 

  16. Combettes, P.L.: The Convex Feasibility Problem in Image Recovery. In: Hawkes, P (ed.) Advanced in Imaging and Electron Physcis, vol. 95, pp 155–270. Academic Press, New York (1996)

  17. Fattorini, H.O.L.: Infinite-Dimensional Optimization and Control Theory. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  18. Nadezhkina, N., Takahashi, W.: Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings. SIAM J. Optim. 16, 1230–1241 (2006)

    Article  MathSciNet  Google Scholar 

  19. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. Zh. Vychisl. Mat. Mat. Fiz. 4, 1–17 (1964)

    Google Scholar 

  20. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set Valued Anal. 9, 3–11 (2001)

    Article  MathSciNet  Google Scholar 

  21. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  22. Maingé, P. E.: Regularized and inertial algorithms for common fixed points of nonlinear operators. J. Math. Anal. Appl. 34, 876–887 (2008)

    Article  MathSciNet  Google Scholar 

  23. Attouch, H., Peypouquet, J., Redont, P.: A dynamical approach to an inertial forward-backward algorithm for convex minimization. SIAM J. Optim. 24, 232–256 (2014)

    Article  MathSciNet  Google Scholar 

  24. Thong, D.V., Hieu, D.V.: Inertial extragradient algorithms for strongly pseudomonotone variational inequalities. J. Comput. Appl. Math. 341, 80–98 (2018)

    Article  MathSciNet  Google Scholar 

  25. Zhang, L., Zhao, H., Lv, Y.: A modified inertial projection and contraction algorithms for quasi-variational inequalities. Appl. Set-Val. Anal. Optim. 1, 63–76 (2019)

    Google Scholar 

  26. Thong, D.V., Hieu, D.V.: Modified subgradient extragradient method for variational inequality problems. Numer. Algor. 79, 597–610 (2018)

    Article  MathSciNet  Google Scholar 

  27. Gibali, A.: A new non-Lipschitzian projection method for solving variational inequalities in Euclidean spaces. J. Nonlinear Anal. Optim. 6, 41–51 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Kluwer, Dordrecht (1990)

    Book  Google Scholar 

  29. Cottle, R.W., Yao, J.C.: Pseudo-monotone complementarity problems in Hilbert space. J. Optim. Theory Appl. 75, 281–295 (1992)

    Article  MathSciNet  Google Scholar 

  30. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the referees for their useful suggestions which improved the contents of this paper.

Funding

This paper was supported by the National Natural Science Foundation of China under Grant No.11401152.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Qin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Qin, X. Strong convergence of an extragradient-like algorithm involving pseudo-monotone mappings. Numer Algor 83, 1577–1590 (2020). https://doi.org/10.1007/s11075-019-00737-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00737-3

Keywords

Mathematics Subject Classification (2010)

Navigation