Abstract
Inthis paper, we study the global uniqueness and solvability of tensor complementarity problems for \(\mathcal {H}_{+}\)-tensors. We obtain a sufficient condition of the global uniqueness and solvability of tensor complementarity problems for \(\mathcal {H}_{+}\)-tensors. We present nonlinear dynamical system models for solving the tensor complementarity problem (TCP). We prove that the presented dynamical system models are stable in the sense of Lyapunov stability theory for considering three classes of structured tensors. The computer simulation results further substantiate that the considered dynamical system can be used to solve the TCP.






Similar content being viewed by others
References
Bai, X., Huang, Z., Wang, Y.: Global uniqueness and solvability for tensor complementarity problems. J. Optim. Theory Appl. 170, 72–84 (2016)
Berman, A., Plemmons, R.: Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia (1994)
Bonnans, J., Cominetti, R., Shapiro, A.: Second order optimality conditions based on parabolic second order tangent sets. SIAM J. Optim. 9, 466–492 (1999)
Bouzerdoum, A., Pattison, T.: Neural network for quadratic optimization with bound constraints. IEEE Trans. Neural Netw. 4, 293–304 (1993)
Che, M., Qi, L., Wei, Y.: Positive-definite tensors to nonlinear complementarity problems. J. Optim. Theory Appl. 168, 475–487 (2016)
Che, M., Qi, L., Wei, Y.: Stochastic r0 tensors to stochastic tensor complementarity problems. Optim. Lett. 13, 261–279 (2019)
Chen, H., Li, G., Qi, L.: Sum-of-squares tensors and their sum-of-squares rank. arXiv:1504.03414V1 (2015)
Chua, L., Lin, G.: Nonlinear programming without computation. IEEE Transactions on Circuits and Systems 31, 182–188 (1984)
Clarke, F.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990)
Cottle, R.: Linear Complementarity Problem. Academic Press Inc., New York (1992)
De Luca, T., Facchinei, F., Kanzow, C.: A semismooth equation approach to the solution of nonlinear complementarity problems. Math. Program. 75, 407–439 (1996)
Ding, F., Shi, Y., Chen, T.: Gradient-based identification methods for hammerstein nonlinear ARMAX models. Nonlinear Dyn. 45, 31–43 (2006)
Ding, W., Luo, Z., Qi, L.: P-tensors, P0-tensors, and tensor complementarity problem. Linear Algebra Appl. 555, 336–354 (2018)
Ding, W., Qi, L., Wei, Y.: \(\mathcal {M}\)-tensors and nonsingular \(\mathcal {M}\)-tensors. Linear Algebra Appl. 439, 3264–3278 (2013)
Ding, W., Wei, Y.: Solving multi-linear systems with \(\mathcal {M}\)-tensors. J. Sci. Comput. 68, 689–715 (2016)
Du, S., Zhang, L.: A mixed integer programming approach to the tensor complementarity problem. J. Glob. Optim. 73, 789–800 (2019)
Du, S., Zhang, L., Chen, C., Qi, L.: Tensor absolute value equations. Sci China Math 61, 1695–1710 (2018)
Facchinei, F., Pang, J.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Singapore, New York (2003)
Fischer, A.: A special newton-type optimization method. Optimization 24, 269–284 (1992)
Gowda, M., Luo, Z., Qi, L., Xiu, N.: \(\mathcal {Z}\)-tensors and complementarity problems. arXiv:1510.07933
Han, L.: A homotopy method for solving multilinear systems with \(\mathcal {M}\)-tensors. Appl. Math. Lett. 69, 49–54 (2017)
Han, L.: A continuation method for tensor complementarity problems. J. Optim. Theory Appl. 180, 949–963 (2019)
Hopfield, J., Tank, D.: Neural computation of decisions in optimization problems. Biol. Cybern. 52, 141–152 (1985)
Huang, Z., Qi, L.: Formulating an n-person noncooperative game as a tensor complementarity problem. Comput. Optim. Appl. 66, 557–576 (2017)
Kannan, M., Shaked-Monderer, N., Berman, A.: Some properties of strong \(\mathcal {H}\)-tensors and general \(\mathcal {H}\)-tensors. Linear Algebra Appl. 476, 42–55 (2015)
Li, S., Chen, S., Liu, B.: Accelerating a recurrent neural network to finite-time convergence for solving time-varying Sylvester equation by using a sign-bi-power activation function. Neural. Process. Lett. 37, 189–205 (2013)
Liao, L., Qi, H.: A neural network for the linear complementarity problem. Math. Comput. Model. 29, 9–18 (1999)
Liao, L., Qi, H., Qi, L.: Solving nonlinear complementarity problems with neural networks: a reformulation method approach. J. Comput. Appl. Math. 131, 343–359 (2001)
Liu, D., Li, W., Vong, S.: Tensor complementarity problems: the GUS-property and an algorithm. Linear and Multilinear Algebra 28, 1726–1749 (2018)
Luo, Z., Qi, L., Xiu, N.: The sparsest solutions to \(\mathcal {Z}\)-tensor complementarity problems. Optim. Lett. 11, 471–482 (2017)
More, J.: Global methods for nonlinear complementarity problems. Math. Oper. Res. 21, 589–614 (1996)
Murty, K.: Linear Complementarity, Linear and Nonlinear Programming. Heldermann (1988)
Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)
Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 33, 353–367 (1993)
Qi, L., Yin, H.: A strongly semismooth integral function and its application. Comput. Optim. Appl. 25, 223–246 (2003)
Qiao, S., Wang, X., Wei, Y.: Two finite-time convergent Zhang neural network models for time-varying complex matrix Drazin inverse. Linear Algebra Appl. 542, 101–117 (2018)
Ramezani, S.: Nonlinear vibration analysis of micro-plates based on strain gradient elasticity theory. Nonlinear Dyn. 73, 1399–1421 (2013)
Rodriguez-Vazquez, A., Dominguez-Castro, R., Rueda, A., Huertas, J.L., Sanchez-Sinencio, E.: Nonlinear switched capacitor ‘neural’ networks for optimization problems. IEEE Transactions on Circuits and Systems 37, 384–398 (1990)
Song, Y., Qi, L.: Properties of some classes of structured tensors. J. Optim. Theory Appl. 165, 854–873 (2015)
Song, Y., Qi, L.: Tensor complementarity problem and semi-positive tensors. J. Optim. Theory Appl. 169, 1069–1078 (2016)
Song, Y., Qi, L.: Properties of tensor complementarity problem and some classes of structured tensors. Ann. Appl. Math., pp. 308–323 (2017)
Song, Y., Yu, G.: Properties of solution set of tensor complementarity problem. J. Optim. Theory Appl. 170, 85–96 (2016)
Stanimirović, P., Katsikis, V., Li, S.: Hybrid GNN-ZNN models for solving linear matrix equations. Neurocomputing 316, 124–134 (2018)
Stanimirović, P., Petković, M., Gerontitis, D.: Gradient neural network with nonlinear activation for computing inner inverses and the Drazin inverse. Neural. Process. Lett. 48, 109–133 (2018)
Stanimirović, P., Zivković, I., Wei, Y.: Recurrent neural network for computing the Drazin inverse. IEEE Transactions on Neural Networks and Learning Systems 26, 2830–2843 (2015)
Wang, X., Che, M., Qi, L., Wei, Y.: Modified gradient dynamic approach to the tensor complementarity problem. Optim. Methods Softw. https://doi.org/10.1080/10556788.2019.1578766
Wang, X., Che, M., Wei, Y.: Existence and uniqueness of positive solution for \(\mathcal {H}^{+}\)-tensor equations. Appl. Math. Lett. 98, 191–198 (2019)
Wang, X., Che, M., Wei, Y.: Neural networks based approach solving multi-linear systems with \(\mathcal {M}\)-tensors. Neurocomputing 351, 33–42 (2019)
Wang, X., Ma, H., Stanimirović, P.: Nonlinearly activated recurrent neural network for computing the Drazin inverse. Neural. Process. Lett. 46, 195–217 (2017)
Wang, X., Stanimirovic, P., Wei, Y.: Complex ZFs for computing time-varying complex outer inverses. Neurocomputing 275, 983–1001 (2018)
Wang, X., Wei, Y.: Bounds for eigenvalues of nonsingular \(\mathcal {H}\)-tensor. Electronic Journal of Linear Algebra 29, 3–16 (2015)
Wang, X., Wei, Y.: 6Pt width \(\mathcal {H}\)-tensors and nonsingular \(\mathcal {H}\)-tensors. Frontiers of Mathematics in China 11, 557–575 (2016)
Wang, Y., Huang, Z., Bai, X.: Exceptionally regular tensors and tensor complementarity problems. Optim. Methods Softw. 31, 815–828 (2016)
Wang, Y., Zhou, G., Caccetta, L.: Nonsingular \(\mathcal {H}\)-tensor and its criteria. Journal of Industrial and Management Optimization 12, 1173–1186 (2017)
Xie, S., Li, D., Xu, H.: An iterative method for finding the least solution to the tensor complementarity problem. J. Optim. Theory Appl. 175, 119–136 (2017)
Xu, H., Li, D., Xie, S.: An equivalent tensor equation to the tensor complementarity problem with positive semi-definite Z-tensor. Optim. Lett. 13, 685–694 (2019)
Zabczyk, J.: Mathematical Control Theory: an Introduction. Springer, New York (2009)
Zak, S., Upatising, V., Hui, S.: Solving linear programming problems with neural networks: a comparative study. IEEE Trans. Neural Netw. 6, 94–104 (1995)
Zhang, Y.: A set of nonlinear equations and inequalities arising in robotics and its online solution via a primal neural network. Neurocomputing 70, 513–524 (2006)
Zhang, Y., Chen, Z., Chen, K.: Convergence properties analysis of gradient neural network for solving online linear equations. Acta Automat. Sin. 35, 1136–1139 (2009)
Zhang, Y., Shi, Y., Chen, K., Wang, C.: Global exponential convergence and stability of gradient-based neural network for online matrix inversion. Appl. Math. Comput. 215, 1301–1306 (2009)
Acknowledgments
We thank the editor and two anonymous reviewers for their detailed and helpful comments.
Funding
Xuezhong Wang is supported by the National Natural Science Foundation of China under grant no. 11771099 and the Natural Science Foundation of Gansu Province and Innovative Ability Promotion Project in Colleges and Universities of Gansu Province. Yimin Wei is also supported by the National Natural Science Foundation of China under grant no. 11771099 and the Innovation Program of Shanghai Municipal Education Commission.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wang, X., Che, M. & Wei, Y. Global uniqueness and solvability of tensor complementarity problems for \(\mathcal {H}_{+}\)-tensors. Numer Algor 84, 567–590 (2020). https://doi.org/10.1007/s11075-019-00769-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-019-00769-9
Keywords
- Tensor complementarity problem
- \(\mathcal {H}_{+}\)-tensors
- Dynamical system
- Activation function
- Convergence