Skip to main content
Log in

An efficient method for computing the outer inverse \(A_{T,S}^{(2)}\) through Gauss-Jordan elimination

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we derive a novel expression for the computation of the outer inverse \(A_{T,S}^{(2)}\). Based on this expression, we present a new Gauss-Jordan elimination method for computing \(A_{R(G),N(G)}^{(2)}\). The analysis of computational complexity indicates that our algorithm is more efficient than the existing Gauss-Jordan elimination algorithms for \(A_{R(G),N(G)}^{(2)}\) in the literature for a large class of problems. Especially for the case when G is a Hermitian matrix, our algorithm has the lowest computational complexity among the existing algorithms. Finally, numerical experiments show that our method for the outer inverse \(A_{R(G),N(G)}^{(2)}\) generally is more efficient than that of the other existing methods in the cases of matrices A with m < n or square matrices G with high rank or Hermitian matrices G in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Israel, A., Greville, T.N.E.: Generalized inverses: theory and applications. Springer, New York (2003)

    MATH  Google Scholar 

  2. Campbell, S.L., Meyer, C.D. Jr.: Generalized inverses of linear transformations. Thomson Press (India) Ltd., New Delhi (1979)

    MATH  Google Scholar 

  3. Wei, Y.M.: A characterization and representation for the generalized inverse \(A_{T,S}^{(2)}\) and its applications. Linear Algebra Appl. 870-96, 280 (1998)

    Google Scholar 

  4. Wei, Y., Wu, H.: The representation and approximation for the generalized inverse \(A_{T,S}^{(2)}\). Appl. Math. Comput. 263–276, 135 (2003)

    Google Scholar 

  5. Chen, Y.L.: Iterative methods for computing the generalized inverses \(A_{T,S}^{(2)}\) of a matrix A. Appl. Math. Comput. 207–222, 75 (1996)

    Google Scholar 

  6. Chen, Y.L., Chen, X.: Representation and approximation of the outer inverse \(A_{T,S}^{(2)}\) of a matrix. Linear Algebra Appl. 85–107, 308 (2000)

    MATH  Google Scholar 

  7. Chen, Y., Tan, X.: Computing generalized inverses of matrices by iterative methods based on splittings of matrices. Appl. Math. Comput. 163(1), 309–325 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Djordjević, D.S., Stanimirović, P.S., Wei, Y.: The representation and approximations of outer generalized inverses. Acta Math. Hungar. 104(1-2), 1–26 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Sheng, X., Chen, G.: Full-rank representation of generalized inverse \(A_{T,S}^{(2)}\) and its applications. Comput. Math. Appl. 1422–1430, 54 (2007)

    Google Scholar 

  10. Stanimirović, P.S., Pappas, D., Katsikis, V.N., Stanimirović, I.P.: Full-rank representations of outer inverses based on the QR decomposition. Appl. Math. Comput. 10321–10333, 218 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Sheng, X., Chen, G.: Several representations of generalized inverse \(A_{T,S}^{(2)}\) and their application. Int.J. Comput. Math. 85(9), 1441–1453 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Cai, J., Chen, G.: On determinantal representation for the generalized inverse \(A_{T,S}^{(2)}\) and its applications. Numer. Linear Algebra Appl. 169–182, 14 (2007)

    Google Scholar 

  13. Yu, Y., Wei, Y.: Determinantal representation of the generalized inverse \(A_{T,S}^{(2)}\) over integral domains and its applications. Linear and Multilinear Algebra. 57(6), 547–559 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Song, G.-J.: Determinantal representations of the generalized inverses \(A_{T,S}^{(2)}\) over the quaternion skew field with applications. J Appl Math Comput. 201–220, 39 (2012)

    MATH  Google Scholar 

  15. Stanimirović, P.S., Cvetković-Ilić, D.S.: Successive matrix squaring algorithm for computing outer inverses. Appl. Math. Comput. 203(1), 19–29 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Liu, X., Qin, Y.: Successive matrix squaring algorithm for computing the generalized inverse \(A_{T,S}^{(2)}\). J. Appl. Math. 2012, 12 (2013)

    Google Scholar 

  17. Chen, Y.: Finite algorithms for the (2)-generalized inverse \(A_{T,S}^{(2)}\). Linear and Multilinear Algebra 61–68, 40 (1995)

    Google Scholar 

  18. Sheng, X., Chen, G.L.: Innovation based on Gaussian elimination to compute generalized inverse \(A_{T,S}^{(2)}\). Comput. Math. Appl. 1823–1829, 65 (2013)

    MATH  Google Scholar 

  19. Sheng, X., Chen, G., Gong, Y.: The representation and computation of generalized inverse \(A_{T,S}^{(2)}\). J. Comput. Appl. Math. 213, 248–257 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Stanimirović, P.S., Petković, M.D.: Gauss-jordan elimination method for computing outer inverses. Appl. Math. Comput. 4667–4679, 219 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Ji, J.: Computing the outer and group inverses through elementary row operations. Comput. Math. Appl. 655–663, 68 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Ji, J.: Gauss-jordan elimination methods for the Moore-Penrose inverse of a matrix. Linear Algebra Appl. 1835–1844, 437 (2012)

    MathSciNet  Google Scholar 

  23. Sheng, X., Chen, G.L.: A note of computation for M-P inverse A+. Int. J. Comput. Math. 2235–2241, 87 (2010)

    MathSciNet  Google Scholar 

  24. Zielke, G.: Report on test matrices for generalized inverses. Computing. 105–162, 36 (1986)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The first author is supported by the Fundamental Research Funds for the Central Universities (JBK1901028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Ma.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Gao, F. & Li, Y. An efficient method for computing the outer inverse \(A_{T,S}^{(2)}\) through Gauss-Jordan elimination. Numer Algor 85, 77–106 (2020). https://doi.org/10.1007/s11075-019-00803-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00803-w

Keywords

Navigation