Abstract
In this paper, the asymptotic expansions for the solution about zero and infinity are formulated via Laplace transform for linear Volterra integral equation with weakly singular convolution kernel. The expansions about zero and infinity, as well as their Padé approximations, are used to approximate the solution when the argument is small and large, respectively, and the Padé approximations are more accurate. The methods are also valid to solve some other Volterra type integral equations including linear Volterra integro-differential equations, fractional integro-differential equations, and system of singular Volterra integral equations of the second kind with convolution kernels. Some examples confirm the correctness of the methods and the effectiveness of the asymptotic expansions. They show that numerical methods are only necessary in a small interval in practical computation when uniform high precision evaluations are needed for solving these kinds of Volterra integral equations.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11075-019-00832-5/MediaObjects/11075_2019_832_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11075-019-00832-5/MediaObjects/11075_2019_832_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11075-019-00832-5/MediaObjects/11075_2019_832_Fig3_HTML.png)
Similar content being viewed by others
References
Allaei, S. S., Diogo, T., Rebelo, M.: Analytical and computational methods for a class of nonlinear singular integral equations. Appl. Numer. Math. 114, 2–17 (2017)
Brezinski, C., Ieea, U., Iseghem, J. V.: A taste of Padé approximation. Acta Numerica 4, 53–103 (1995)
Brunner, H.: Nonpolynomial spline collocation for Volterra equations with weakly singular kernels. SIAM J. Numer. Anal. 20, 1106–1119 (1983)
Brunner, H.: Collocation methods for Volterra integral and related functional equations. Cambridge University Press, Cambridge (2004)
Cao, Y. Z., Herdman, T., Xu, Y. S.: A hybrid collocation method for Volterra integral equations with weakly singular kernels. SIAM J. Numer. Anal. 41, 364–381 (2004)
Coffey, M. W.: A set of identities for a class of alternating binomial sums arising in computing applications. Util. Math. 76, 79–90 (2008)
Cohen, A. M.: Numerical methods for Laplace transform inversion. Springer Science+Business Media, LLC, New York (2007)
Derbenev, V. A., Tsalyuk, Z. B.: Asymptotic behavior of the resolvent of an unstable Volterra equation with kernel depending on the difference of the arguments. Math. Notes 6, 74–79 (1997)
Diogo, T., Ma, J. T., Rebelo, M.: Fully discretized collocation methods for nonlinear singular Volterra integral equations. J. Comput. Appl. Math. 247, 84–101 (2013)
Friedman, A.: On integral equations of Volterra type. J. Anal. Math. 11, 381–413 (1963)
Gorenflo, R., Vessella, S.: Abel integral equations. Springer-Verlag, Berlin (1991)
Handelsman, R. A., Olmstead, W. E.: Asymptotic solution to a class of nonlinear Volterra integral equations. SIAM J. Appl. Math. 22, 373–384 (1972)
Jumarhon, B., McKee, S.: Product integration methods for solving a system of nonlinear Volterra integral equations. J. Comput. Appl. Math. 69, 285–301 (1996)
Kilbas, A. A., Saigo, M.: On solution of integral equation of Abel-Volterra type. Differential Integral Equations 8, 993–1011 (1995)
Kilbas, A. A., Saigo, M.: On solution of nonlinear Abel-Volterra integral equation. J. Appl. Math. Anal. Appl. 229, 41–60 (1999)
Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and applications of fractional differential equations. Elsevier Science Ltd, Amsterdam (2006)
Kumar, I. J.: On the asymptotic solution of a nonlinear Volterra integral equation. Proc. R. Soc. Lond. A 324, 45–61 (1971)
Oberhettinger, F., Badii, L.: Tables of Laplace Transforms. Springer-Verlag, Berlin (1973)
Olmstead, W. E., Handelsman, R. A.: Asymptotic solution to a class of nonlinear Volterra integral equations(II). SIAM J. Appl. Math. 30, 180–189 (1976)
Olver, F. W. J.: Asymptotics and special functions. Academic Press, New York (1974)
Polyanin, A. D., Manzhirov, A. V.: Handbook of Integral Equations, 2nd edn. Chapman & Hall/CRC, London (2008)
Taghvafard, H., Erjaee, C. H.: On solving a system of singular Volterra integral equations of convolution type. Commun. Nonlinear Sci. Numer. Simul. 16, 3486–3492 (2011)
Trivedi, V. K., Kumar, I. J.: On a Mellin transform technique for the asymptotic solution of a nonlinear Volterra integral equation. Proc. R. Soc. Lond. A 352, 339–349 (1977)
Wang, T. K., Li, N., Gao, G. H.: The asymptotic expansion and extrapolation of trapezoidal rule for integrals with fractional order singularities. Int. J. Comput. Math. 92, 579–590 (2015)
Wang, T. K., Liu, Z. F., Zhang, Z. Y.: The modified composite Gauss type rules for singular integrals using Puiseux expansions. Math. Comp. 86, 345–373 (2017)
Wang, T. K., Zhang, Z. Y., Liu, Z. F.: The practical Gauss type rules for Hadamard finite-part integrals using Puiseux expansions. Adv. Comput. Math. 43, 319–350 (2017)
Wang, T. K., Gu, Y. S., Zhang, Z. Y.: An algorithm for the inversion of Laplace transforms using Puiseux expansions. Numer. Algorithms 78, 107–132 (2018)
Wazwaz, A. M.: Linear and Nonlinear Integral Equations (Methods and Applications). Higher Education Press, Beijing and Springer-Verlag, Berlin Heidelberg (2011)
Wong, J. S. W., Wong, R.: Asymptotic solutions of linear Volterra integral equations with singular kernels. Trans. Amer. Math. Soc. 189, 185–200 (1974)
Wyman, M., Wong, R.: The asymptotic behavior of μ(z,β,α). Canad. J. Math. 21, 1013–1023 (1969)
Yang, C. Q., Hou, J. H.: Numerical method for solving Volterra integral equations with a convolution kernel. IAENG Int. J. Appl. Math. 43, 185–189 (2013)
Acknowledgments
The authors would like to thank the editor and the referees for their helpful suggestions and comments, which significantly improve the quality of the paper.
Funding
This project is supported by the Program for Innovative Research Team in Universities of Tianjin (TD13-5078) and the Doctor Foundation of Tianjin Normal University (52XB1515).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wang, T., Qin, M. & Lian, H. The asymptotic approximations to linear weakly singular Volterra integral equations via Laplace transform. Numer Algor 85, 683–711 (2020). https://doi.org/10.1007/s11075-019-00832-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-019-00832-5
Keywords
- Linear Volterra type integral equations of the second kind
- Convolution kernel
- Laplace transform
- Asymptotic expansion about zero or infinity
- Padé approximation