Skip to main content
Log in

Two-Level method for the total fractional-order variation model in image deblurring problem

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Image deblurring with total fractional-order variation model is used to improve the quality of the deblurred images. This model is very efficient in preserving edges and removing staircase effect. However, the regularization matrix associated with the total fractional-order model is dense which complicate developing an efficient numerical algorithm. In this research work, we present an efficient and robust Two-Level method to overcome the dense problem. The Two-Level method started by reducing the problem to one small non-linear system with dense regularization matrix (Level-I) and one less expensive large linear system with sparse regularization matrix (Level-II). The derivation of the optimal regularization parameter of Level-II is studied and formula is presented. Numerical experiments on several images are also provided to demonstrate the efficiency of the Two-Level method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fairag, F.: A two-level finite-element discretization of the stream function form of the Navier-Stokes equations. Comput. Math. Appl. 36(2), 117–127 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Girault, V., Lions, J.-L.: Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra. Portugaliae Mathematica 58(1), 25–58 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Layton, W.: A two-level discretization method for the Navier-Stokes equations. Comput. Math. Appl. 26(2), 33–38 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Shao, X.-p., Han, D.-f.: A two-grid algorithm based on Newton iteration for the stream function form of the Navier-Stokes equations. Appl. Math.- J. Chinese Univ. 26(3), 368 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Layton, W., Lenferink, W.: Two-level Picard and modified Picard methods for the Navier-Stokes equations. Appl. Math. Comput. 69(2-3), 263–274 (1995)

    MathSciNet  MATH  Google Scholar 

  6. Foster, E.L., Iliescu, T., Wells, D.R.: A two-level finite element discretization of the streamfunction formulation of the stationary quasi-geostrophic equations of the ocean. Comput. Math. Appl. 66(7), 1261–1271 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chun-feng, R., Yi-chen, M.: Two-grid error estimates for the stream function form of Navier-Stokes equations. Appl. Math. Mech. 23(7), 773–782 (2002)

    Article  MathSciNet  Google Scholar 

  8. Chun-feng, R., Yi-chen, M.: Residual a posteriori error estimate two-grid methods for the steady Navier-Stokes equation with stream function form. Appl. Math. Mech. 25(5), 546–559 (2004)

    Article  MathSciNet  Google Scholar 

  9. Layton, W., Ye, X.: Two-level discretizations of the stream function form of the Navier-Stokes equations. Numeri. Funct. Anal. Optim. 20(9–10), 909–916 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Shao, X., Han, D.: A two-grid method with backtracking technique for the stream function form of the Navier–Stokes equations. Appl. Math. Comput. 274, 649–660 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Xu, J.: A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15(1), 231–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Xu, J.: Some two-grid finite element methods. Contemp. Math. 157, 79–79 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yashtini, M., Kang, S.H.: Alternating direction method of multiplier for Euler’s elastica-based denoising. In: International Conference on Scale Space and Variational Methods in Computer Vision, pp 690–701. Springer (2015)

  14. Layton, W., Tobiska, L.: A two-level method with backtracking for the Navier–Stokes equations. SIAM J. Numer. Anal. 35(5), 2035–2054 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Campisi, P., Egiazarian, K.: Blind Image Deconvolution: Theory and Applications. CRC Press (2016)

  16. Groetsch, C.W., Groetsch, C.: Inverse Problems in the Mathematical Sciences, vol. 52. Springer (1993)

  17. Tikhonov, A.N.: Regularization of incorrectly posed problems. Soviet Math. Dokl 4, 1624–1627 (1963)

    MATH  Google Scholar 

  18. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlin. Phenom. 60(1), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Probl. 10(6), 1217 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, J., Chen, K., Yu, B.: An iterative Lagrange multiplier method for constrained total-variation-based image denoising. SIAM J. Numer. Anal. 50(3), 983–1003 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Osher, S., Solé, A., Vese, L.: Image decomposition and restoration using total variation minimization and the H1. Multiscale Model. Simul. 1(3), 349–370 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chan, T.F., Yip, A.M., Park, F.E.: Simultaneous total variation image inpainting and blind deconvolution. Int. J. Imaging Syst. Technol. 15(1), 92–102 (2005)

    Article  Google Scholar 

  23. Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shen, J., Kang, S.H., Chan, T.F.: Euler’s elastica and curvature-based inpainting. SIAM J. Appl. Math. 63(2), 564–592 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhu, W., Chan, T.: Image denoising using mean curvature of image surface. SIAM J. Imag. Sci. 5(1), 1–32 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chang, Q., Tai, X.-C., Xing, L.: A compound algorithm of denoising using second-order and fourth-order partial differential equations. Numer. Math. Theory Methods Appl 2, 353–376 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen, D., Chen, Y., Xue, D.: Fractional-order total variation image restoration based on primal-dual algorithm. In: Abstract and Applied Analysis, vol. 2013. Hindawi Publishing Corporation (2013)

  28. Chen, D., Chen, Y., Xue, D.: Three fractional-order TV-L2 models for image denoising. J. Comput. Inform. Syst. 9(12), 4773–4780 (2013)

    Google Scholar 

  29. Chan, R., Lanza, A., Morigi, S., Sgallari, F.: An adaptive strategy for the restoration of textured images using fractional order regularization. Numer. Math.: Theory Methods Appl. 6(01), 276–296 (2013)

    MathSciNet  MATH  Google Scholar 

  30. Chen, D., Sun, S., Zhang, C., Chen, Y., Xue, D.: Fractional-order TV-L2 model for image denoising. Central Europ. J. Phys. 11(10), 1414–1422 (2013)

    Google Scholar 

  31. Zhang, J., Chen, K.: A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution. SIAM J. Imag. Sci. 8(4), 2487–2518 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, J., Wei, Z., Xiao, L.: Adaptive fractional-order multi-scale method for image denoising. J. Math. Imag. Vis. 43(1), 39–49 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Chan, R., Lanza, A., Morigi, S., Sgallari, F.: An adaptive strategy for the restoration of textured images using fractional order regularization. Numer. Math.: Theory Methods Appl. 6(1), 276–296 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Zhang, J., Chen, K.: Variational image registration by a total fractional-order variation model. J. Comput. Phys. 293, 442–461 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Miller, K.S., Ross, B: An introduction to the fractional calculus and fractional differential equations (1993)

  36. Oldham, K., Spanier, J.: The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order, vol. 111. Elsevier (1974)

  37. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Academic Press (1998)

  38. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 172(1), 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56(1), 80–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, H., Du, N.: Fast solution methods for space-fractional diffusion equations. J. Comput. Appl. Math. 255, 376–383 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Chen, K., Fairag, F., Al-Mahdi, A.: Preconditioning techniques for an image deblurring problem. Numer. Linear Algebra Appl. 23(3), 570–584 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Vogel, C.R., Oman, M.E.: Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE Trans Image Process. 7(6), 813–824 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  43. Goldstein, T., Osher, S.: The split Bregman method for l1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work received funding support provided by the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum and Minerals (KFUPM) through project no. SR161018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Al-Mahdi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fairag, F., Al-Mahdi, A. & Ahmad, S. Two-Level method for the total fractional-order variation model in image deblurring problem. Numer Algor 85, 931–950 (2020). https://doi.org/10.1007/s11075-019-00845-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00845-0

Keywords

Navigation