Skip to main content
Log in

Existence and approximation of fixed points of multivalued generalized α-nonexpansive mappings in Banach spaces

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We introduce multivalued generalized α-nonexpansive mappings and present a fixed point result. The multivalued version of the iteration process (Piri et al., Numerical Algorithms, 1–20, 2018) is proposed and some weak and strong convergence results in uniformly convex Banach space are established. Further, we also study the stability of the modified iteration process. Finally, we compare the rate of convergence of suggested multivalued version of iteration process with several known iteration processes through a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abbas, M., Nazir, T.: A new faster iteration process applied to constrained minimization and feasibility problems. Mat. Vesn. 66, 223–234 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Abkar, A., Eslamian, M.: Generalized nonexpansive multivalued mappings in strictly convex Banach spaces. Fixed Point Theory 14(2), 269–280 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Abkar, A., Eslamian, M.: A fixed point theorem for generalized nonexpansive multivalued mappings. Fixed Point Theory 12(2), 241–246 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Aoyama, K., Kohsaka, F.: Fixed point theorem for α-nonexpansive mappings in Banach spaces. Nonlinear Anal. 74, 4387–4391 (2011)

    Article  MathSciNet  Google Scholar 

  5. Berinde, V.: Iterative Approximation of Fixed Points, vol. 1912. Springer, Berlin (2007)

    MATH  Google Scholar 

  6. Browder, F.E.: Nonexpansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. USA 54, 1041–1044 (1965)

    Article  MathSciNet  Google Scholar 

  7. Chen, Y.-A., Wen, D.-J.: Convergence analysis of an accelerated iteration for monotone generalized α-nonexpansive mappings with a partial order. Journal of Function Spaces 2019 (2019)

  8. Garcéa-Falset, J., Llorens-Fuster, E., Moreno-Gà álvez, E.: Fixed point theory for multivalued generalized nonexpansive mappings. Appl. Anal. Discrete Math. 6, 265–286 (2012)

    Article  MathSciNet  Google Scholar 

  9. Göhde, D.: Zum Prinzip der kontraktiven Abbildung. Math. Nachr. 30, 251–258 (1965)

    Article  MathSciNet  Google Scholar 

  10. Harder, A.M., Hicks, T.L.: A stable iteration procedure for nonexpansive mappings. Math. Jpn. 33, 687–692 (1988)

    MathSciNet  MATH  Google Scholar 

  11. Harder, A.M., Hicks, T.L.: Stability results for fixed point iteration procedures. Math. Jpn. 33, 693–706 (1988)

    MathSciNet  MATH  Google Scholar 

  12. Ishikawa, S.: Fixed points by a new iteration method. Proc. Amer. Math. Soc. 44, 147–150 (1974)

    Article  MathSciNet  Google Scholar 

  13. Lim, T.C.: A fixed point theorem for multivalued nonexpansive mappings in a uniformly convex Banach space. Bull. Amer. Math. Soc. 80, 1123–1126 (1974)

    Article  MathSciNet  Google Scholar 

  14. Mann, W.R.: Mean value methods in iteration. Proc. Amer. Math. Soc. 4, 506–510 (1953)

    Article  MathSciNet  Google Scholar 

  15. Nadler, S.B.: Multi-valued contraction mappings. Pacific J. Math. 30, 28–291 (1969)

    Article  MathSciNet  Google Scholar 

  16. Ostrowski, A.M.: The round-off stability of iterations. Z. Angew. Math. Mech. 47, 77–81 (1967)

    Article  MathSciNet  Google Scholar 

  17. Pandey, R., Pant, R., Rakočevié, V., Shukla, R.: Approximating fixed points of a general class of nonexpansive mappings in banach spaces with applications. Results Math. 74(1), 7 (2018)

    Article  MathSciNet  Google Scholar 

  18. Pant, R., Shukla, R.: Approximating fixed points of generalized α-nonexpansive mapping in Banach space. Numer. Funct. Anal. Optim. 38(2), 248–266 (2017)

    Article  MathSciNet  Google Scholar 

  19. Piri, H., Daraby, B., Rahrovi, S., Ghasemi, M.: Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces by new faster iteration process. Numerical Algorithms, 1–20 (2018)

  20. Senter, H.F., Dotson, W.G.: Approximatig fixed points of nonexpansive mappings. Proc. Am. Math. Soc. 44(2), 375–380 (1974)

    Article  Google Scholar 

  21. Schu, J.: Weak and strong convergence to fixed points of asymptotically nonexpansive mappings. Bull. Aust. Math. Soc. 43, 153–159 (1991)

    Article  MathSciNet  Google Scholar 

  22. Shahzad, N., Zegeye, H.: On Mann and Ishikawa iteration schemes for multi-valued maps in Banach spaces. Nonlinear Anal. 71(3–4), 838–844 (2009)

    Article  MathSciNet  Google Scholar 

  23. Suzuki, T.: Fixed point theorems and convergence theorems for some generalized nonexpansive mappings. J. Math. Anal. Appl. 340(2), 1088–1095 (2008)

    Article  MathSciNet  Google Scholar 

  24. Thakur, B.S., Thakur, D., Postolache, M.: A new iterative scheme for numerical reckoning fixed points of Suzuki’s generalized nonexpansive mappings. Appl. Math. Comput. 275, 147–155 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Thakur, B.S., Thakur, D., Postolache, M.: A new iteration scheme for approximating fixed points of nonexpansive mappings. Filomat 30, 2711–2720 (2016)

    Article  MathSciNet  Google Scholar 

  26. Weng, X.: Fixed point iteration for local strictly pseudocontractive mapping. Proc. Am. Math. Soc. 113, 727–731 (1991)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the referees for their valuable comments and suggestions which helped us in improving the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hira Iqbal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, H., Abbas, M. & Husnine, S.M. Existence and approximation of fixed points of multivalued generalized α-nonexpansive mappings in Banach spaces. Numer Algor 85, 1029–1049 (2020). https://doi.org/10.1007/s11075-019-00854-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00854-z

Keywords

Mathematics Subject Classification (2010)

Navigation