Skip to main content
Log in

Convergence analysis of the product integration method for solving the fourth kind integral equations with weakly singular kernels

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we consider product integration method based on orthogonal polynomials to solve mixed system of Volterra integral equations of the first and second kind with weakly singular kernels. For investigation of the theoretical and numerical analysis of the mixed systems, the notions of the tractability index and ν-smoothing property are extended for a weakly singular Volterra integral operator. Convergence analysis of the product integration method is derived. Finally, the proposed method is illustrated by two examples, which confirm the theoretical prediction of the error estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Apartsyn, A.S.: Nonclassical linear volterra equations of the first kind, VSP, Utrecht (2003)

  2. Balakumar, V., Murugesan, K.: Numerical solution of Volterra integral-algebraic equations using block pulse functions. Appl. Math. Comput. 263, 165–170 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Banerjea, S., Dutta, B.: On a weakly singular integral equation and its application. Appl. Math. Lett. 1;21(7), 729–34 (2008)

    Article  MathSciNet  Google Scholar 

  4. Brunner, H.: Collocation methods for volterra integral and related functional equations. Cambridge University Press (2004)

  5. Brunner, H.: Volterra Integral Equations: An Introduction to Theory and Applications. Cambridge University Press, Cambridge/UK (2017)

    Book  Google Scholar 

  6. Brunner, H., Bulatov, M.V.: On singular systems of integral equations with weakly singular kernels. In: Proceeding 11-th Baikal International School Seminar, pp. 64–67 (1998)

  7. Bulatov, M.V.: Regularization of singular system of Volterra integral equation. Comput. Math. Math. Phys. 42, 315–320 (2002)

    MathSciNet  Google Scholar 

  8. Bulatov, M.V., Chistyakov, V.F.: The Properties of Differential-Algebraic Systems and Their Integral Analogs. Memorial University of Newfoundland, Newfoundland (1997)

  9. Bulatov, M.V., Lima, P.M., Weinmuller, E.: Existence and uniqueness of solutions to weakly singular integral-algebraic and integro-differential equations, Vienna Technical University, ASC Report No. 21 (2012)

  10. Bulatov, M.V., Lima, P.M.: Two-dimensional integral-algebraic systems: analysis and computational methods. J. Comput. Appl. Math. 236, 132–140 (2011)

    Article  MathSciNet  Google Scholar 

  11. Budnikova, O.S., Bulatov, M.V.: Numerical solution of integral-algebraic equations for multistep methods. Comput. Math. Math. Phys. 52, 691–701 (2012)

    Article  MathSciNet  Google Scholar 

  12. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods Fundamentals in Single Domains. Springer-Verlag (2006)

  13. Chen, Y., Tang, T.: Convergence analysis of the Jacobi spectral collocation methods for Volterra integral equations with a weakly singular kernel. Math. Comp. 79, 147–167 (2010)

    Article  MathSciNet  Google Scholar 

  14. Chistyakova, E.V., Chistyakov, V.F.: Solution of differential algebraic equations with the Fredholm operator by the least squares method, Applied Numerical Mathematics. https://doi.org/10.1016/j.apnum.2019.04.013 (2019)

  15. Farahani, M.S., Hadizadeh, M.: Direct regularization for system of integral-algebraic equations of index-1. Inverse Probl. Sci. Eng. 26(5), 728–743 (2018)

    Article  MathSciNet  Google Scholar 

  16. Gear, C.W.: Differential-algebraic equations, indices, and integral-algebraic equations. SIAM J. Numer. Anal. 27, 1527–1534 (1990)

    Article  MathSciNet  Google Scholar 

  17. Griepentrog, E., März, R.: Differential-Algebraic Equations and Their Numerical Treatment. Number 88 in Teubner Texte Zur Mathematik, Teubner, Leipzig (1986)

  18. Griepentrog, E., März, R.: Basic properties of some differential-algebraic equations. Z. Anal Anwendungen 8, 25–40 (1989)

    Article  MathSciNet  Google Scholar 

  19. Goldman, N.L.: Inverse Stefan Problems Mathematics and Its Applications, vol. 412. Kluwer Academic Publishers, Dordrecht (1997)

    Book  Google Scholar 

  20. Hadizadeh, M., Ghoreishi, F., Pishbin, S.: Jacobi spectral solution for integral-algebraic equations of index-2. Appl. Numer. Math. 61, 131–148 (2011)

    Article  MathSciNet  Google Scholar 

  21. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-dependent Problems. vol. 21, Cambridge University Press (2007)

  22. Khater, A.H., Shamardan, A.B., Callebaut, D.K., Sakran, M.R.A.: Solving integral equations with logarithmic kernels by Chebyshev polynomials. Numer Algor. 47, 81–93 (2008)

    Article  MathSciNet  Google Scholar 

  23. Liang, H., Brunner, H.: Integral-algebraic equations: theory of collocation methods I. SIAM J. Numer. Anal. 51(4), 2238–2259 (2013)

    Article  MathSciNet  Google Scholar 

  24. Liang, H., Brunner, H.: Integral-algebraic equations: theory of collocation methods II. SIAM J. Numer. Anal. 54, 2640–2663 (2016)

    Article  MathSciNet  Google Scholar 

  25. Liang, H., Brunner, H.: Collocation methods for integro-differential algebraic equations with index 1. IMA J. Numer. Anal. 39, 36 (2019)

    Google Scholar 

  26. März, R.: The index of linear differential-algebraic equations with properly stated leading terms. Results Math. 42, 308–338 (2002)

    Article  MathSciNet  Google Scholar 

  27. März, R.: Solvability of linear differential algebraic equations with properly stated leading terms, Preprint Nr. 2002-12, Inst. für Mathematik, Humboldt-Universitätzu Berlin

  28. Slodička, M., Schepper, H.D.: Determination of the heat-transfer coefficient during solidification of alloys. Comput. Methods Appl. Mech. Engrg. 194, 491–498 (2005)

    Article  MathSciNet  Google Scholar 

  29. Pishbin, S., Ghoreishi, F., Hadizadeh, M.: A posteriori error estimation for the Legendre collocation method applied to integral-algebraic Volterra equations. Electron. Trans. Numer. Anal. 38, 327–346 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Pishbin, S., Ghoreishi, F., Hadizadeh, M.: The semi-explicit Volterra integral algebraic equations with weakly singular kernels: the numerical treatments. J. Comput. Appl. Math. 245, 121–132 (2013)

    Article  MathSciNet  Google Scholar 

  31. Pishbin, S.: Numerical solution and structural analysis of two-dimensional integralalgebraic equations. Numer Algor. 73, 305–322 (2016)

    Article  MathSciNet  Google Scholar 

  32. Pishbin, S.: Operational Tau method for singular system of Volterra integro-differential equations. J. Comput. Appl. Math. 311, 205–214 (2017)

    Article  MathSciNet  Google Scholar 

  33. Pishbin, S.: Optimal convergence results of piecewise polynomial collocation solutions for integral-algebraic equations of index-3. J. Comput. Appl. Math. 279, 209–224 (2015)

    Article  MathSciNet  Google Scholar 

  34. Pishbin, S.: The numerical solution of the semi-explicit IDAEs by discontinuous piecewise polynomial approximation. Appl. Math. Comput. 339, 93–104 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Tao, L., Yong, H.: Extrapolation method for solving weakly singular nonlinear Volterra integral equations of second kind. J. Math. Anal. Appl. 324, 225–237 (2006)

    Article  MathSciNet  Google Scholar 

  36. Wazwaz, A.M.: Linear and Nonlinear Integral Equations, vol. 639. Springer, Heidelberg (2011)

    Book  Google Scholar 

  37. Wazwaz, A.M., Khuri, S.A.: A reliable technique for solving the weakly singular second-kind Volterra-type integral equations. Appl. Math Comp. 80, 287–299 (1990)

    Article  MathSciNet  Google Scholar 

  38. Weiss, R.: Product integration for the generalized Abel equation. Math Comput. 26(117), 177–190 (1972)

    Article  MathSciNet  Google Scholar 

  39. Xianjuan, L., Tang, T.: Convergence analysis of Jacobi spectral collocation methods for Abel-Volterra integral equations of second kind. Front. Math. China 7.1, 69–84 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Zabreiko, P.P., et al.: Integral’ nye uravneniya (Integral Equations), Moscow:Nauka (1968)

  41. Zolfaghari, R., Nedialkov, N.: Structural analysis of linear integral-algebraic equations. Journal of Computational and Applied Mathematics. DOI10.1016/j.cam.2018.12.043 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Pishbin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajjadi, S.A., Pishbin, S. Convergence analysis of the product integration method for solving the fourth kind integral equations with weakly singular kernels. Numer Algor 86, 25–54 (2021). https://doi.org/10.1007/s11075-020-00877-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00877-x

Keywords

Mathematics subject classification (2010)

Navigation