Skip to main content
Log in

Extended nonsymmetric global Lanczos method for matrix function approximation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Extended Krylov subspace methods are attractive methods for computing approximations of matrix functions and other problems producing large-scale matrices. In this work, we propose the extended nonsymmetric global Lanczos method for solving some matrix approximation problems. The derived algorithm uses short recursive relations to generate bi-orthonormal bases, with respect to the Frobenius inner product, of the corresponding extended Krylov subspaces \({K^{e}_{m}}(A,V)\) and \({K^{e}_{m}}(A^{T},W)\). Here, A is a large nonsymmetric matrix; V and \(W\in \mathbb {R}^{n\times s}\) are two blocks. New algebraic properties of the proposed method are developed and applications to approximation of both WTf(A)V and trace(WTf(A)V ) are given. Numerical examples are presented to show the performance of the extended nonsymmetric global Lanczos for these problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abidi, O., Heyouni, M., Jbilou, K.: On some properties of the extended block and global Arnoldi methods with applications to model reduction. Numer. Algorithms 75, 285–304 (2017)

    Article  MathSciNet  Google Scholar 

  2. Barkouki, H., Bentbib, A.H., Heyouni, M., Jbilou, K.: An extended nonsymmetric block Lanczos method for model reduction in large scale dynamical systems. Calcolo 55, 13–36 (2018)

    Article  MathSciNet  Google Scholar 

  3. Baroni, S., Gebauer, R., Malcioglu, O.B., Saad, Y., Umari, P., Xian, J.: Harnessing Molecular Excited States with Lanczos Chains, vol. 22. Art. Id. 074204 (2010)

  4. Bellalij, M., Reichel, L., Rodriguez, G., Sadok, H.: Bounding matrix functionals via partial global block Lanczos decomposition. Appl. Numer. Math. 94, 127–139 (2015)

    Article  MathSciNet  Google Scholar 

  5. Bellalij, M., Jbilou, K., Sadok, H.: New convergence results on the global GMRES method for diagonalizable matrices. J. Comput. Appl. Math. 219, 350–358 (2008)

    Article  MathSciNet  Google Scholar 

  6. Bouyouli, R., Jbilou, K., Sadaka, R., Sadok, H.: Convergence properties of some block Krylov subspace methods for multiple linear systems. J. Comput. Appl. Math. 196, 498–511 (2006)

    Article  MathSciNet  Google Scholar 

  7. Bowler, D.R., Miyazaki, T.: O(n) methods in electronic structure calculations. Rep. Prog. Phys. 75, 43 (2012). Art. Id. 036503

    Article  Google Scholar 

  8. Davis, T., Hu, Y.: The SuiteSparse Matrix Collection, https://sparse.tamu.edu

  9. Druskin, V., Knizhnerman, L.: Extended Krylov subspaces: approximation of the matrix square root and related functions. SIAM J. Matrix Anal. Appl. 19, 755–771 (1998)

    Article  MathSciNet  Google Scholar 

  10. Estrada, E.: The Structure of Complex Networks: Theory and Applications. Oxford University Press, Oxford (2011)

    Book  Google Scholar 

  11. Fenu, C., Reichel, L., Rodriguez, G., Sadok, H.: GCV for Tikhonov regularization by partial SVD. BIT 57, 1019–1039 (2017)

    Article  MathSciNet  Google Scholar 

  12. Golub, G.H., Meurant, G.: Matrices, Moments and Quadrature with Applications. Princeton University Press, Princeton (2010)

    Book  Google Scholar 

  13. Han, I., Malioutov, D., Shin, J.: Large-scale log-determinant computation through stochastic chebyshev expansions. Proceedings of The 32nd International Conference on Machine Learning 37, 908–917 (2015)

    Google Scholar 

  14. Hansen, P.C.: Rank-deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  15. Heyouni, M.: Extended Arnoldi methods for large low-rank Sylvester matrix equations. Appl. Numer. Math. 60, 1171–1182 (2010)

    Article  MathSciNet  Google Scholar 

  16. HIGHAM, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008)

  17. Jbilou, K., Sadok, A., Messaoudi, H.: Global FOM and GMRES algorithms for matrix equations. Appl. Numer Math. 31, 49–63 (1999)

    Article  MathSciNet  Google Scholar 

  18. Jbilou, K., Sadok, H., Tinzeft, A.: Oblique projection methods for multiple linear systems. Elect. Trans. Num. Anal. 20, 119–138 (2005)

    MATH  Google Scholar 

  19. Knizhnerman, VL., Simoncini, A: New investigation of the extended Krylov subspace method for matrix function evaluations. Numer. Linear Algebra Appl. 17, 615–638 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Ngo, T.T., Bellalij, M., Saad, Y.: The trace ratio optimization problem. SIAM Rev. 54, 545–569 (2012)

    Article  MathSciNet  Google Scholar 

  21. Reichel, L., Rodriguez, G., Tang, T.: New block quadrature rules for the approximation of matrix functions. Linear Algebra Appl. 502, 299–326 (2016)

    Article  MathSciNet  Google Scholar 

  22. Saad, Y., Chelikowsky, J., Shontz, S.: Numerical methods for electronic structure calculations of materials. SIAM Rev. 52, 3–54 (2010)

    Article  MathSciNet  Google Scholar 

  23. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  Google Scholar 

  24. Simoncini, V.: A new iterative method for solving large-scale Lyapunov matrix equations. SIAM J. Sci. Comput. 29, 1268–1288 (2007)

    Article  MathSciNet  Google Scholar 

  25. Schweitzer, M.: A two-sided short-recurrence extended Krylov subspace method for nonsymmetric matrices and its relation to rational moment matching. Numer. Algorithms 76, 1–31 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank the two anonymous referees for their valuable remarks and suggestions allowing us to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. El Ghomari.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bentbib, A.H., El Ghomari, M. & Jbilou, K. Extended nonsymmetric global Lanczos method for matrix function approximation. Numer Algor 84, 1459–1479 (2020). https://doi.org/10.1007/s11075-020-00896-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00896-8

Keywords

Mathematics Subject Classification (2010)