Abstract
Extended Krylov subspace methods are attractive methods for computing approximations of matrix functions and other problems producing large-scale matrices. In this work, we propose the extended nonsymmetric global Lanczos method for solving some matrix approximation problems. The derived algorithm uses short recursive relations to generate bi-orthonormal bases, with respect to the Frobenius inner product, of the corresponding extended Krylov subspaces \({K^{e}_{m}}(A,V)\) and \({K^{e}_{m}}(A^{T},W)\). Here, A is a large nonsymmetric matrix; V and \(W\in \mathbb {R}^{n\times s}\) are two blocks. New algebraic properties of the proposed method are developed and applications to approximation of both WTf(A)V and trace(WTf(A)V ) are given. Numerical examples are presented to show the performance of the extended nonsymmetric global Lanczos for these problems.

Similar content being viewed by others
References
Abidi, O., Heyouni, M., Jbilou, K.: On some properties of the extended block and global Arnoldi methods with applications to model reduction. Numer. Algorithms 75, 285–304 (2017)
Barkouki, H., Bentbib, A.H., Heyouni, M., Jbilou, K.: An extended nonsymmetric block Lanczos method for model reduction in large scale dynamical systems. Calcolo 55, 13–36 (2018)
Baroni, S., Gebauer, R., Malcioglu, O.B., Saad, Y., Umari, P., Xian, J.: Harnessing Molecular Excited States with Lanczos Chains, vol. 22. Art. Id. 074204 (2010)
Bellalij, M., Reichel, L., Rodriguez, G., Sadok, H.: Bounding matrix functionals via partial global block Lanczos decomposition. Appl. Numer. Math. 94, 127–139 (2015)
Bellalij, M., Jbilou, K., Sadok, H.: New convergence results on the global GMRES method for diagonalizable matrices. J. Comput. Appl. Math. 219, 350–358 (2008)
Bouyouli, R., Jbilou, K., Sadaka, R., Sadok, H.: Convergence properties of some block Krylov subspace methods for multiple linear systems. J. Comput. Appl. Math. 196, 498–511 (2006)
Bowler, D.R., Miyazaki, T.: O(n) methods in electronic structure calculations. Rep. Prog. Phys. 75, 43 (2012). Art. Id. 036503
Davis, T., Hu, Y.: The SuiteSparse Matrix Collection, https://sparse.tamu.edu
Druskin, V., Knizhnerman, L.: Extended Krylov subspaces: approximation of the matrix square root and related functions. SIAM J. Matrix Anal. Appl. 19, 755–771 (1998)
Estrada, E.: The Structure of Complex Networks: Theory and Applications. Oxford University Press, Oxford (2011)
Fenu, C., Reichel, L., Rodriguez, G., Sadok, H.: GCV for Tikhonov regularization by partial SVD. BIT 57, 1019–1039 (2017)
Golub, G.H., Meurant, G.: Matrices, Moments and Quadrature with Applications. Princeton University Press, Princeton (2010)
Han, I., Malioutov, D., Shin, J.: Large-scale log-determinant computation through stochastic chebyshev expansions. Proceedings of The 32nd International Conference on Machine Learning 37, 908–917 (2015)
Hansen, P.C.: Rank-deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1998)
Heyouni, M.: Extended Arnoldi methods for large low-rank Sylvester matrix equations. Appl. Numer. Math. 60, 1171–1182 (2010)
HIGHAM, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008)
Jbilou, K., Sadok, A., Messaoudi, H.: Global FOM and GMRES algorithms for matrix equations. Appl. Numer Math. 31, 49–63 (1999)
Jbilou, K., Sadok, H., Tinzeft, A.: Oblique projection methods for multiple linear systems. Elect. Trans. Num. Anal. 20, 119–138 (2005)
Knizhnerman, VL., Simoncini, A: New investigation of the extended Krylov subspace method for matrix function evaluations. Numer. Linear Algebra Appl. 17, 615–638 (2010)
Ngo, T.T., Bellalij, M., Saad, Y.: The trace ratio optimization problem. SIAM Rev. 54, 545–569 (2012)
Reichel, L., Rodriguez, G., Tang, T.: New block quadrature rules for the approximation of matrix functions. Linear Algebra Appl. 502, 299–326 (2016)
Saad, Y., Chelikowsky, J., Shontz, S.: Numerical methods for electronic structure calculations of materials. SIAM Rev. 52, 3–54 (2010)
Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)
Simoncini, V.: A new iterative method for solving large-scale Lyapunov matrix equations. SIAM J. Sci. Comput. 29, 1268–1288 (2007)
Schweitzer, M.: A two-sided short-recurrence extended Krylov subspace method for nonsymmetric matrices and its relation to rational moment matching. Numer. Algorithms 76, 1–31 (2016)
Acknowledgments
We would like to thank the two anonymous referees for their valuable remarks and suggestions allowing us to improve the quality of the paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bentbib, A.H., El Ghomari, M. & Jbilou, K. Extended nonsymmetric global Lanczos method for matrix function approximation. Numer Algor 84, 1459–1479 (2020). https://doi.org/10.1007/s11075-020-00896-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-020-00896-8
Keywords
- Extended Krylov subspace
- Extended moment matching
- Laurent polynomial
- Nonsymmetric global Lanczos method
- Matrix function