Skip to main content

Advertisement

Log in

Explicit pseudo two-step exponential Runge–Kutta methods for the numerical integration of first-order differential equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper is devoted to the explicit pseudo two-step exponential Runge–Kutta (EPTSERK) methods for the numerical integration of first-order ordinary differential equations. These methods inherit the structure of explicit pseudo two-step Runge–Kutta methods and explicit exponential Runge–Kutta methods. We analyze the order conditions and the global errors of the new methods. The new methods are of order s + 1 with s-stages for some suitable nodes. Numerical experiments are reported to show the convergence and the efficiency of the new methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

All data, models, or code generated or used during the study are available from the corresponding author by request.

References

  1. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979)

    Article  Google Scholar 

  2. Brugnano, L., Iavernaro, F., Trigiante, D.: Energy and quadratic invariants preserving integrators based upon Gauss collocation formulae. SIAM J. Numer. Anal. 50, 2897–2916 (2012)

    Article  MathSciNet  Google Scholar 

  3. Cong, N.H.: Explicit pseudo two-step Runge-Kutta methods for parallel computers. Int. J. Comput. Math. 73, 77–91 (1999)

    Article  MathSciNet  Google Scholar 

  4. Cong, N.H.: Explicit pseudo two-step RKN methods with stepsize control. Appl. Numer. Math. 38, 135–144 (2001)

    Article  MathSciNet  Google Scholar 

  5. Cong, N.H., Strehmel, K., Weiner, R.: Runge-kutta-nyström-type parallel block predictor-corrector methods. Adv. Comput Math. 10, 115–133 (1999)

    Article  MathSciNet  Google Scholar 

  6. Cong, N.H., Strehmel, K., Weiner, R.: A general class of explicit pseudo two-step RKN methods on parallel computers. Comput. Math. Appl. 38, 17–39 (1999)

    Article  MathSciNet  Google Scholar 

  7. Cox, S., Matthews, P.: Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430–455 (2002)

    Article  MathSciNet  Google Scholar 

  8. Fang, Y.L., Liu, C.Y., Wang, B.: Efficient energy-preserving methods for general nonlinear oscillatory Hamiltonian systems. Act. Math. Sin. 34, 1863–1878 (2018)

    Article  MathSciNet  Google Scholar 

  9. Fang, Y.L., Yang, Y.P., You, X.: A new family of A stable Runge Kutta methods with equation dependent coefficients for stiff problems. Numer. Algo. 81, 1235–1251 (2019)

    Article  MathSciNet  Google Scholar 

  10. Feng, X.L., Song, H.L., Tang, T., Yang, J.: Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation. Inve. Prob. Imag. 7, 679–695 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Franco, J.M.: New methods for oscillatory systems based on ARKN methods. Appl. Numer. Math. 56, 1040–1053 (2006)

    Article  MathSciNet  Google Scholar 

  12. Hairer E., Lubich C., Wanner G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)

  13. Hayes, L.J.: Gelerkin alternating direction methods for nonrectangular regions using patch approximations. SIAM J. Numer. Anal. 18, 727–643 (1987)

    Google Scholar 

  14. Hochbruck, M., Lubich, C., Selhofer, H.: Exponential integrators for large systems of differential equations. SIAM J. Sci. Comput. 19, 1552–1574 (1998)

    Article  MathSciNet  Google Scholar 

  15. Kutta, W.: Beritrag zur näherungsweisen integration totaler differentialgleichungen. Zeitschr. für Math. u. Phys. 46, 435–453 (1901)

    MATH  Google Scholar 

  16. Li, J.Y., Deng, S., Wang, X.F.: Extended explicit pseudo two-step RKN methods for oscillatory systems \(y^{\prime \prime }+my=f(y)\). Numer. Algo. 78, 673–700 (2018)

    Article  MathSciNet  Google Scholar 

  17. Liu, C., Iserles, A., Wu, X.: Symmetric and arbitrarily high-order Birkhoff-Hermite time integrators and their long-time behaviour for solving nonlinear Klein-Gordon equations. J. Comput. Phys. 356, 1–30 (2018)

    Article  MathSciNet  Google Scholar 

  18. Liu, C., Wu, X.: Nonlinear stability and convergence of ERKN integrators for solving nonlinear multi-frequency highly oscillatory second-order ODEs with applications to semi-linear wave equations. Appl. Numer. Math. 153, 352–380 (2020)

    Article  MathSciNet  Google Scholar 

  19. Liu, C., Wu, X., Shi, W.: New energy-preserving algorithms for nonlinear Hamiltonian wave equation equipped with Neumann boundary conditions. Appl. Math. Comput. 339, 588–606 (2018)

    Article  MathSciNet  Google Scholar 

  20. Mei, L., Wu, X.: Symplectic exponential Runge-Kutta methods for solving nonlinear Hamiltonian systems. J. Comput. Phys. 338, 567–584 (2017)

    Article  MathSciNet  Google Scholar 

  21. Runge, C.: Ueber die numerische auflösung von differentialgleichungen. Math. Ann. 46, 167–178 (1895)

    Article  MathSciNet  Google Scholar 

  22. Wang, B., Wu, X.: A new high precision energy-preserving integrator for system of oscillatory second-order differential equations. Phys. Lett. A. 376, 1185–1190 (2012)

    Article  MathSciNet  Google Scholar 

  23. Wang, B., Wu, X., Meng, F., Fang, Y.: Exponential Fourier collocation methods for solving first-order differential equations. J. Comput. Math. 35, 711–736 (2017)

    Article  MathSciNet  Google Scholar 

  24. Weiner, R., El-Azab, T.: Exponential peer methods. Appl. Numer. Math. 62, 1335–1348 (2012)

    Article  MathSciNet  Google Scholar 

  25. Hochbruch, M., Ostermann, A.: Explicit exponential Runge-Kutta methods for semilinear parabolic problems. SIAM J. Numer. Anal. 43, 1069–1090 (2005)

    Article  MathSciNet  Google Scholar 

  26. Wu, X.Y., Wang, B.: Multidimensional adapted Runge-Kutta-nyström methods for oscillatory systems. Comput. Phys. Commun. 181, 1955–1962 (2010)

    Article  Google Scholar 

  27. Wu, Y.J., Wang, B.: Symmetric and symplectic exponential integrators for nonlinear Hamiltonian systems. Appl. Math. Lett. 90, 215–222 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the editor and anonymous referees for their invaluable comments and suggestions which helped to improve the manuscript.

Funding

This research is partially supported by the National Natural Science Foundation of China (No. 11571302), the Natural Science Foundation of Shandong Province, China (No. ZR2018MA024), the project of Shandong Province higher Educational Science and Technology Program (Nos. J18KA247, J17KA190), and the foundation of innovative science and technology for youth in universities of Shandong Province (2019KJI001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonglei Fang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Hu, X. & Li, J. Explicit pseudo two-step exponential Runge–Kutta methods for the numerical integration of first-order differential equations. Numer Algor 86, 1143–1163 (2021). https://doi.org/10.1007/s11075-020-00927-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00927-4

Keywords