Skip to main content
Log in

Evolutionary derivation of Runge–Kutta pairs for addressing inhomogeneous linear problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Two new Runge–Kutta (RK) pairs of orders 6(4) and 7(5) are presented for solving numerically the inhomogeneous linear initial value problems with constant coefficients. These new pairs use only six and eight stages per step respectively. Six stages are needed for conventional Runge–Kutta pairs of orders 5(4) while for such a pair of orders 6(5) we use eight stages. Thus, our proposal is an improvement and it is achieved since the set of order conditions is smaller in the case of interest here. Since traditional simplifications for derivation of Runge–Kutta methods do not apply for this reduced set, we proceed using the differential evolution technique for solving it. We finalize by performing tests over some relevant problems with very pleasant results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Butcher, J.C.: Implicit Runge-Kutta processes. Math. Comput. 18, 50–64 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  2. Butcher, J.C.: On Runge-Kutta processes of high order. J. Austral. Math. Soc. 4, 179–194 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  3. Butcher, J.C.: The Numerical Analysis of ODEs: Runge-Kutta and General Linear Methods. Wiley, Chichester (1987)

    MATH  Google Scholar 

  4. Dormand, J.R., Lockyer, M.A., McGorrigan, N.E., Prince, P.J.: Global error estimation with Runge-Kutta triples. Comput. Maths. Appl. 18, 835–846 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. England, R.: Error estimates for Runge? Kutta type solutions of systems of ordinary differential equations. Comput. J 12, 166–170 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  7. Enright, W.H.: The efficient solution of linear constant-coefficient systems of differential equations. Simulation 30, 129–133 (1978)

    Article  MATH  Google Scholar 

  8. Famelis, I.T., Papakostas, S.N., Tsitouras, Ch.: Symbolic derivation of Runge-Kutta order conditions. J. Symbolic Comput. 37, 311–327 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fehlberg, E.: Low order classical Runge-Kutta formulas with step-size control and their application to some heat transfer problems, NASA Tech. Rep. TR R-315, 1969, G. C. Marsal Space Flight Center, Ala. 35812

  10. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  11. Hochbruck, M., Ostermann, A.: Explicit exponential Runge–Kutta methods for semilinear parabolic problems. SIAM J. Numer. Anal. 43, 1069–1090 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hui, F., Simos, T.E.: Four stages symmetric two-step p-stable method with vanished phase-lag and its first, Second, Third and Fourth derivatives. Appl. Comput. Math. 15, 220–238 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Jansing, G.: EXPODE - Advanced Exponential Time Integration Toolbox For MATLAB, Code Documentation. arXiv:1404.4580v1 [math.NA] (2014)

  14. Katsikis, V.N., Papakostas, S.N., Tsitmidelis, S., Tsitouras, Ch.: Evolutionary Generation of Explicit Two Step Methods for Second Order Linear IVPs, AIP Conf. Proc., 1738, No 480038 (2016)

  15. Kovalnogov, V.N., Simos, T.E., Tsitouras, Ch.: Ninth Order, Explicit, Two Step Methods for Second Order Inhomogeneous Linear IVPs, Math. Meth. Appl. Sci., to appear

  16. Lambert, J.D.: Numerical Methods for ODEs. Wiley, Chichester (1991)

    Google Scholar 

  17. Lin, C., Chen, J.J., Simos, T.E., Tsitouras, Ch.: Evolutionary derivation of sixth order P–stable SDIRKN methods for the solution of PDEs with the Method of Lines, Mediter. J. Maths, 16, Article ID: 69 (2019)

  18. Lin, Chialiang, Hsu, Chieh-Wen, Simos, T.E., Tsitouras, Ch.: Explicit, semi-symmetric, hybrid, six-step, eighth order methods for solving y\(^{\prime \prime }=\)f(x,y). Appl. Comput. Math. 18, 396–304 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Liu, C., Hsu, C.-W., Tsitouras, Ch., Simos, T.E.: Hybrid Numerov–type methods with coefficients trained to perform better on classical orbits. B. Malays. Math. Sci. So 42, 2119–2134 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Low, K.H.: Displacement and Frequency analyses of vibratory systems. Comput. Struct. 54, 743–755 (1995)

    Article  MATH  Google Scholar 

  21. MATLAB version R2019b, The Mathworks, Inc., Natick, MA

  22. Medvedev, M.A., Simos, T.E., Tsitouras, Ch.: Fitted modifications of Runge-Kutta pairs of orders 6(5). Math. Meth. Appl. Sci. 41, 6184–6194 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Medvedev, M.A., Simos, T.E., Tsitouras, C. h.: Trigonometric-fitted hybrid four-step methods of sixth order for solving \(y^{\prime \prime }(x)=f(x,y)\). Math. Meth. Appl. Sci. 42, 710–716 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Papageorgiou, G., Famelis, I.T., Tsitouras, Ch.: A P-stable singly diagonally implicit runge-kutta-nyström method. Numer. Algorithms 17, 345–353 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Papageorgiou, G., Tsitouras, C. h., Famelis, I.T.: Explicit Numerov type methods for second order IVPs with oscillating solutions. Int. J. Modern Phys C 12, 657–666 (2001)

    Article  Google Scholar 

  26. Papageorgiou, G., Tsitouras, Ch., Papakostas, S.N.: Runge-kutta pairs for periodic initial value problems. Computing 51, 151–163 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Papakostas, S.N., Tsitouras, Ch., Papageorgiou, G.: A general family of explicit Runge-Kutta pairs of orders 6(5). SIAM J. Numer. Anal. 33, 917–936 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shampine, L.F.: Cheaper integration of linear systems. Simulation 20, 17 (1973)

    Article  Google Scholar 

  29. Shampine, L.F.: Some practical Runge–Kutta formulas. Math. Comput. 46, 135–150 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  30. Simos, T.E.: Multistage symmetric two-step P-stable method with vanished phase-lag and its first, second and third derivatives. Appl. Comput. Math. 14, 296–315 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Simos, T.E., Tsitouras, Ch.: Evolutionary generation of high order, explicit, two step methods for second order linear IVPs. Math. Meth. Appl. Sci. 40, 6276–6284 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Simos, T.E., Tsitouras, Ch.: High phase–lag order, four–step methods for solving \(y^{\prime \prime }=f(x,y)\). Appl. Comput. Math. 17, 307–316 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Simos, T.E., Tsitouras, Ch.: Explicit, Ninth order, two step methods for solving inhomogeneous linear problems \(x^{\prime \prime }(t)={\Lambda } x(t)+f(t)\). Appl. Numer. Math. 153, 344–351 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Simos, T.E., Tsitouras, Ch., Famelis, I.Th.: Explicit numerov type methods with constant coefficients: a review. Appl. Comput. Math. 16, 89–113 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tsitouras, C. h.: A tenth order symplectic Runge-Kutta-Nyström method. Cele. Mech. Dynamical Astron. 74, 223–230 (1999)

    Article  MATH  Google Scholar 

  37. Tsitouras, Ch.: Explicit two–step methods for second order linear IVPs. Comput. Math. Appl. 43, 943–949 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tsitouras, Ch.: Explicit Runge–Kutta methods for starting integration of Lane–Emden problem. Appl. Math. Comput. 354, 353–364 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Tsitouras, Ch., Papakostas, S.N.: Cheap error estimation for Runge-Kutta methods. SIAM J. Sci. Comput. 20, 2067–2088 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tsitouras, Ch., Simos, T.E.: High algebraic, high phase-lag order embedded Numerov-type methods for oscillatory problems. Appl. Math. Comput. 131, 201–211 (2002)

    MathSciNet  MATH  Google Scholar 

  41. Tsitouras, Ch., Simos, T.E.: Trigonometric fitted explicit Numerov type method with vanishing phase–lag and its first and second derivatives, Mediterr. J. Math., 15(168) (2018)

  42. Van Der Houwen, P.J., Sommeijer, B.P.: Explicit runge-kutta-nyström methods with reduced phase errors for computing oscillating solutions. SIAM J. Numer. Anal. 24, 595–617 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zingg, D.W., Chisholm, T.T.: Runge-kutta methods for linear ordinary differential equations. Appl. Numer. Math. 31, 227–238 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Simos.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highly Cited Researcher (2001-2013 List, 2017 List and 2018 List), Active Member of the European Academy of Sciences and Arts. Active Member of the European Academy of Sciences. Corresponding Member of European Academy of Arts, Sciences and Humanities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simos, T.E., Tsitouras, C. Evolutionary derivation of Runge–Kutta pairs for addressing inhomogeneous linear problems. Numer Algor 87, 511–525 (2021). https://doi.org/10.1007/s11075-020-00976-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00976-9

Keywords

Mathematics Subject Classification (2010)

Navigation