Skip to main content
Log in

A linearized high-order Galerkin finite element approach for two-dimensional nonlinear time fractional Klein-Gordon equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we propose a linearized finite element method for solving two-dimensional fractional Klein-Gordon equations with a cubic nonlinear term. The employed time discretization is a weighted combination of the L2 − 1σ formula introduced recently by Lyu and Vong (Numer. Algorithms 78(2):485–511, 2018), Galerkin finite element method is used for the spatial discretization, and the cubic nonlinear term is handled explicitly. Using mathematical induction, we prove that the numerical solution is bounded and the fully discrete scheme is convergent with second-order accuracy in time. In numerical experiments, some problems with both smooth and non-smooth exact solutions are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alikhanov, A. A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. An, N., Huang, C., Yu, X.: Error analysis of direct discontinuous Galerkin method for two-dimensional fractional diffusion-wave equation. Appl. Math. Comput. 349, 148–157 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Bramble, J. H., Pasciak, J. E., Steinbach, O.: On the stability of the l2 projection in h1(Ω). Math. Comp. 71(237), 147–156 (2002)

    Article  MathSciNet  Google Scholar 

  4. Bu, W., Xiao, A., Zeng, W.: Finite difference/finite element methods for distributed-order time fractional diffusion equations. J. Sci. Comput. 72(1), 422–441 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, H., Lü, S., Chen, W., et al.: A fully discrete spectral method for the nonlinear time fractional Klein-Gordon equation. Taiwanese J. Math. 21(1), 231–251 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, L.: IFEM: an innovative finite element methods package in MATLAB. Preprint, University of Maryland (2008)

  7. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: An implicit RBF meshless approach for solving the time fractional nonlinear Sine-Gordon and Klein–Gordon equations. Eng. Anal. Bound. Elem. 50, 412–434 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deng, W.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47(1), 204–226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Du, R., Cao, W., Sun, Z.: A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 34(10), 2998–3007 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, S., Mei, L., Li, Y.: An efficient Galerkin spectral method for two-dimensional fractional nonlinear reaction–diffusion-wave equation. Comput. Math. Appl. 74(10), 2449–2465 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huang, J., Tang, Y., Vázquez, L., Yang, J.: Two finite difference schemes for time fractional diffusion-wave equation. Numer. Algorithms 64(4), 707–720 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, C., Zhao, Z., Chen, Y.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62(3), 855–875 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, L., Xu, D., Luo, M.: Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation. J. Comput. Phys. 255, 471–485 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, M., Gu, X. M., Huang, C., Fei, M., Zhang, G.: A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations. J. Comput. Phys. 358, 256–282 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, X.: Meshless numerical analysis of a class of nonlinear generalized Klein-Gordon equations with a well-posed moving least squares approximation. Appl. Math. Model. 48(aug.), 153–182 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liao, H. L., Zhao, Y., Teng, X. H.: A weighted ADI scheme for subdiffusion equations. J. Sci. Comput. 69(3), 1144–1164 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, Y., Du, Y., Li, H., He, S., Gao, W.: Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction–diffusion problem. Comput. Math. Appl. 70(4), 573–591 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lyu, P., Liang, Y., Wang, Z.: A fast linearized finite difference method for the nonlinear multi-term time-fractional wave equation. Appl. Numer. Math. 151, 448–471 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lyu, P., Vong, S.: A linearized second-order scheme for nonlinear time fractional Klein-Gordon type equations. Numer. Algorithms 78(2), 485–511 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mainardi, F.: The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9(6), 23–28 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Morawetz, C. S.: Time decay for the nonlinear Klein-Gordon equations. Proc. Roy. Soc. London Ser. A 306, 291–296 (1968)

    MathSciNet  MATH  Google Scholar 

  22. Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51(1), 491–515 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ren, J., Sun, Z. Z.: Numerical algorithm with high spatial accuracy for the fractional diffusion-wave equation with Neumann boundary conditions. J. Sci. Comput. 56(2), 381–408 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schneider, W. R., Wyss, W.: Fractional diffusion and wave equations. J. Math. Phys. 30(1), 134–144 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Strauss, W., Vazquez, L.: Numerical solution of a nonlinear Klein-Gordon equation. J. Comput. Phys. 28(2), 271–278 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sun, H., Sun, Z. Z., Gao, G. H.: Some temporal second order difference schemes for fractional wave equations. Numer. Methods Partial Differential Equations 32(3), 970–1001 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sun, Z. Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, vol. 1054. Springer, Berlin (1984)

    MATH  Google Scholar 

  29. Vong, S., Lyu, P.: Unconditional convergence in maximum-norm of a second-order linearized scheme for a time-fractional Burgers-type equation. J. Sci. Comput. 76(2), 1252–1273 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vong, S., Wang, Z.: A compact difference scheme for a two dimensional fractional Klein–Gordon equation with Neumann boundary conditions. J. Comput. Phys. 274, 268–282 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Vong, S., Wang, Z.: A high-order compact scheme for the nonlinear fractional Klein–Gordon equation. Numer. Methods Partial Differential Equations 31(3), 706–722 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, Z., Vong, S.: A compact difference scheme for a two dimensional nonlinear fractional Klein–Gordon equation in polar coordinates. Comput. Math. Appl. 71(12), 2524–2540 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yang, Y., Chen, Y., Huang, Y., Wei, H.: Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis. Comput. Math. Appl. 73(6), 1218–1232 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yin, B., Liu, Y., Li, H., He, S.: Fast algorithm based on TT-m FE system for space fractional Allen–Cahn equations with smooth and non-smooth solutions. J. Comput. Phys. 379, 351–372 (2019)

    Article  MathSciNet  Google Scholar 

  35. Zhang, G., Huang, C., Li, M.: A mass-energy preserving Galerkin FEM for the coupled nonlinear fractional Schrödinger equations. Eur. Phys. J. Plus 133(4), 155 (2018)

    Article  Google Scholar 

  36. Zhang, H., Jiang, X.: Unconditionally convergent numerical method for the two-dimensional nonlinear time fractional diffusion-wave equation. Appl. Numer. Math. 146, 1–12 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, Y. N., Sun, Z. Z., Zhao, X.: Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation. SIAM J. Numer. Anal. 50(3), 1535–1555 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and referee for their constructive comments and suggestions which have improved this paper. This work was supported by NSF of China (Nos. 11771163 and 12011530058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengming Huang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Huang, C., Fei, M. et al. A linearized high-order Galerkin finite element approach for two-dimensional nonlinear time fractional Klein-Gordon equations. Numer Algor 87, 551–574 (2021). https://doi.org/10.1007/s11075-020-00978-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00978-7

Keywords

Navigation