Abstract
In this paper, we propose a linearized finite element method for solving two-dimensional fractional Klein-Gordon equations with a cubic nonlinear term. The employed time discretization is a weighted combination of the L2 − 1σ formula introduced recently by Lyu and Vong (Numer. Algorithms 78(2):485–511, 2018), Galerkin finite element method is used for the spatial discretization, and the cubic nonlinear term is handled explicitly. Using mathematical induction, we prove that the numerical solution is bounded and the fully discrete scheme is convergent with second-order accuracy in time. In numerical experiments, some problems with both smooth and non-smooth exact solutions are considered.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11075-020-00978-7/MediaObjects/11075_2020_978_Fig1_HTML.png)
Similar content being viewed by others
References
Alikhanov, A. A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)
An, N., Huang, C., Yu, X.: Error analysis of direct discontinuous Galerkin method for two-dimensional fractional diffusion-wave equation. Appl. Math. Comput. 349, 148–157 (2019)
Bramble, J. H., Pasciak, J. E., Steinbach, O.: On the stability of the l2 projection in h1(Ω). Math. Comp. 71(237), 147–156 (2002)
Bu, W., Xiao, A., Zeng, W.: Finite difference/finite element methods for distributed-order time fractional diffusion equations. J. Sci. Comput. 72(1), 422–441 (2017)
Chen, H., Lü, S., Chen, W., et al.: A fully discrete spectral method for the nonlinear time fractional Klein-Gordon equation. Taiwanese J. Math. 21(1), 231–251 (2017)
Chen, L.: IFEM: an innovative finite element methods package in MATLAB. Preprint, University of Maryland (2008)
Dehghan, M., Abbaszadeh, M., Mohebbi, A.: An implicit RBF meshless approach for solving the time fractional nonlinear Sine-Gordon and Klein–Gordon equations. Eng. Anal. Bound. Elem. 50, 412–434 (2015)
Deng, W.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47(1), 204–226 (2008)
Du, R., Cao, W., Sun, Z.: A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 34(10), 2998–3007 (2010)
Guo, S., Mei, L., Li, Y.: An efficient Galerkin spectral method for two-dimensional fractional nonlinear reaction–diffusion-wave equation. Comput. Math. Appl. 74(10), 2449–2465 (2017)
Huang, J., Tang, Y., Vázquez, L., Yang, J.: Two finite difference schemes for time fractional diffusion-wave equation. Numer. Algorithms 64(4), 707–720 (2013)
Li, C., Zhao, Z., Chen, Y.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62(3), 855–875 (2011)
Li, L., Xu, D., Luo, M.: Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation. J. Comput. Phys. 255, 471–485 (2013)
Li, M., Gu, X. M., Huang, C., Fei, M., Zhang, G.: A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations. J. Comput. Phys. 358, 256–282 (2018)
Li, X.: Meshless numerical analysis of a class of nonlinear generalized Klein-Gordon equations with a well-posed moving least squares approximation. Appl. Math. Model. 48(aug.), 153–182 (2017)
Liao, H. L., Zhao, Y., Teng, X. H.: A weighted ADI scheme for subdiffusion equations. J. Sci. Comput. 69(3), 1144–1164 (2016)
Liu, Y., Du, Y., Li, H., He, S., Gao, W.: Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction–diffusion problem. Comput. Math. Appl. 70(4), 573–591 (2015)
Lyu, P., Liang, Y., Wang, Z.: A fast linearized finite difference method for the nonlinear multi-term time-fractional wave equation. Appl. Numer. Math. 151, 448–471 (2020)
Lyu, P., Vong, S.: A linearized second-order scheme for nonlinear time fractional Klein-Gordon type equations. Numer. Algorithms 78(2), 485–511 (2018)
Mainardi, F.: The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9(6), 23–28 (1996)
Morawetz, C. S.: Time decay for the nonlinear Klein-Gordon equations. Proc. Roy. Soc. London Ser. A 306, 291–296 (1968)
Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51(1), 491–515 (2013)
Ren, J., Sun, Z. Z.: Numerical algorithm with high spatial accuracy for the fractional diffusion-wave equation with Neumann boundary conditions. J. Sci. Comput. 56(2), 381–408 (2013)
Schneider, W. R., Wyss, W.: Fractional diffusion and wave equations. J. Math. Phys. 30(1), 134–144 (1989)
Strauss, W., Vazquez, L.: Numerical solution of a nonlinear Klein-Gordon equation. J. Comput. Phys. 28(2), 271–278 (1978)
Sun, H., Sun, Z. Z., Gao, G. H.: Some temporal second order difference schemes for fractional wave equations. Numer. Methods Partial Differential Equations 32(3), 970–1001 (2016)
Sun, Z. Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)
Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, vol. 1054. Springer, Berlin (1984)
Vong, S., Lyu, P.: Unconditional convergence in maximum-norm of a second-order linearized scheme for a time-fractional Burgers-type equation. J. Sci. Comput. 76(2), 1252–1273 (2018)
Vong, S., Wang, Z.: A compact difference scheme for a two dimensional fractional Klein–Gordon equation with Neumann boundary conditions. J. Comput. Phys. 274, 268–282 (2014)
Vong, S., Wang, Z.: A high-order compact scheme for the nonlinear fractional Klein–Gordon equation. Numer. Methods Partial Differential Equations 31(3), 706–722 (2015)
Wang, Z., Vong, S.: A compact difference scheme for a two dimensional nonlinear fractional Klein–Gordon equation in polar coordinates. Comput. Math. Appl. 71(12), 2524–2540 (2016)
Yang, Y., Chen, Y., Huang, Y., Wei, H.: Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis. Comput. Math. Appl. 73(6), 1218–1232 (2017)
Yin, B., Liu, Y., Li, H., He, S.: Fast algorithm based on TT-m FE system for space fractional Allen–Cahn equations with smooth and non-smooth solutions. J. Comput. Phys. 379, 351–372 (2019)
Zhang, G., Huang, C., Li, M.: A mass-energy preserving Galerkin FEM for the coupled nonlinear fractional Schrödinger equations. Eur. Phys. J. Plus 133(4), 155 (2018)
Zhang, H., Jiang, X.: Unconditionally convergent numerical method for the two-dimensional nonlinear time fractional diffusion-wave equation. Appl. Numer. Math. 146, 1–12 (2019)
Zhang, Y. N., Sun, Z. Z., Zhao, X.: Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation. SIAM J. Numer. Anal. 50(3), 1535–1555 (2012)
Acknowledgments
The authors would like to thank the editor and referee for their constructive comments and suggestions which have improved this paper. This work was supported by NSF of China (Nos. 11771163 and 12011530058).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhang, G., Huang, C., Fei, M. et al. A linearized high-order Galerkin finite element approach for two-dimensional nonlinear time fractional Klein-Gordon equations. Numer Algor 87, 551–574 (2021). https://doi.org/10.1007/s11075-020-00978-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-020-00978-7