Skip to main content
Log in

An implicit-explicit preconditioned direct method for pricing options under regime-switching tempered fractional partial differential models

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Recently, fractional partial differential equations have been widely applied in option pricing problems, which better explains many important empirical facts of financial markets, but rare paper considers the multi-state options pricing problem based on fractional diffusion models. Thus, multi-state European option pricing problem under regime-switching tempered fractional partial differential equation is considered in this paper. Due to the expensive computational cost caused by the implicit finite difference scheme, a novel implicit-explicit finite difference scheme has been developed with consistency, stability, and convergence guarantee. Since the resulting coefficient matrix equals to the direct sum of several Toeplitz matrices, a preconditioned direct method has been proposed with \({\mathcal O}(\bar {S}N\log N+\bar {S}^{2} N)\) operation cost on each time level with adaptability analysis, where \(\bar {S}\) is the number of states and N is the number of grid points. Related numerical experiments including an empirical example have been presented to demonstrate the effectiveness and accuracy of the proposed numerical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Asiimwe, P., Mahera, C.W., Menoukeu-Pamen, O.: On the price of risk under a regime switching CGMY process. Asia-pacific Finan. Markets 23, 305 (2016)

    Article  Google Scholar 

  2. Bao, J., Zhao, Y.: Option pricing in Markov-modulated exponential Levý models with stochastic interest rates. J. Comput. Appl. Math. 357, 146–160 (2019)

    Article  MathSciNet  Google Scholar 

  3. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81(3), 637–654 (1973)

    Article  MathSciNet  Google Scholar 

  4. Boyarchenko, S., Levendorskii, S.: Non-Gaussian Merton-Black-Scholes Theory. World Scientific, Singapore (2002)

    Book  Google Scholar 

  5. Carr, P., Geman, H., Madan, D.B., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75(2), 305–333 (2002)

    Article  Google Scholar 

  6. Carr, P., Wu, L.: The finite moment log stable process and option pricing. J. Financ. 58(2), 753–777 (2003)

    Article  Google Scholar 

  7. Cartea, A., del Castillo-Negrete, D.: Fractional diffusion models of option prices in markets with jumps. Physica A 374(2), 749–763 (2007)

    Article  Google Scholar 

  8. Chan, R., Jin, X.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)

    Book  Google Scholar 

  9. Chen, M., Deng, W.: High order algorithms for the fractional substantial diffusion equation with truncated Lévy flights. SIAM J. Sci. Comput. 37(2), A890–A917 (2015)

    Article  Google Scholar 

  10. Chen, W., Wang, S.: A penalty method for a fractional order parabolic variational inequality governing American put option valuation. Comput. Math. Appl. 67(1), 77–90 (2014)

    Article  MathSciNet  Google Scholar 

  11. Chen, W., Xu, X., Zhu, S.: A predictor-corrector approach for pricing American options under the finite moment log-stable model. Appl. Numer. Math. 97, 15–29 (2015)

    Article  MathSciNet  Google Scholar 

  12. Chen, X., Wang, W., Ding, D., Lei, S.: A fast preconditioned policy iteration method for solving the tempered fractional HJB equation governing American options valuation. Comput. Math. Appl. 73, 1932–1944 (2017)

    Article  MathSciNet  Google Scholar 

  13. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. CRC press, London (2003)

    MATH  Google Scholar 

  14. Elliott, R.J., Osakwe, C.J.U.: Option pricing for pure jump processes with Markov switching compensators. Financ. Stoch. 10, 250 (2006)

    Article  MathSciNet  Google Scholar 

  15. Gohberg, I., Olshevsky, V.: Circulants, displacements and decompositions of matrices. Integr. Equat. Oper. Th. 15, 730–743 (1992)

    Article  MathSciNet  Google Scholar 

  16. Guo, X., Li, Y.: Valuation of American options under the CGMY model. Quant. Financ. 16, 1529–1539 (2016)

    Article  MathSciNet  Google Scholar 

  17. Guo, X., Li, Y., Wang, H.: A high order finite difference method for tempered fractional diffusion equations with application to the CGMY model. SIAM. J. Sci. Comput 40, A3322–A3343 (2018)

    MATH  Google Scholar 

  18. Guo, X., Li, Y., Wang, H.: Tempered fractional diffusion equations for pricing multi-asset options under CGMYe process. Comput. Math. Appl. 76, 1500–1514 (2018)

    Article  MathSciNet  Google Scholar 

  19. Itkin, A., Carr, P.: Using pseudo-parabolic and fractional equations for option pricing in jump diffusion models. Comput. Econ. 40, 63–104 (2012)

    Article  Google Scholar 

  20. Kazmi, K., An, IMEX: Predictor–corrector method for pricing options under regime-switching jump-diffusion models. Int. J. Comput. Math., pp. 1–21 (2018)

  21. Lei, S., Huang, Y.: Fast algorithms for high-order numerical methods for space-fractional diffusion equations. Int. J. Comput. Math. 94, 1062–1078 (2016)

    Article  MathSciNet  Google Scholar 

  22. Lei, S., Sun, H.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)

    Article  MathSciNet  Google Scholar 

  23. Lei, S., Wang, W., Chen, X., Ding, D.: A fast preconditioned penalty method for American options pricing under regime-switching tempered fractional diffusion models. J. Sci. Comput. 75, 1633–1655 (2018)

    Article  MathSciNet  Google Scholar 

  24. Meng, Q., Ding, D., Sheng, Q.: Preconditioned iterative methods for fractional diffusion models in finance. Numer. Meth. Part Differ. Equ. 31(5), 1382–1395 (2014)

    Article  MathSciNet  Google Scholar 

  25. Momeya, R.H., Morales, M.: On the price of risk of the underlying Markov chain in a regime-switching exponential Levý model. Methodol. Comput. Appl. Probab. 18, 107 (2016)

    Article  MathSciNet  Google Scholar 

  26. Plemmons, R.J.: M-matrix characterizations.I–nonsingular M-matrices. Linear Algebra Appl. 18(2), 175–188 (1977)

    Article  MathSciNet  Google Scholar 

  27. Rambeerich, N.A., Pantelous, A.: A high order finite element scheme for pricing options under regime switching jump diffusion processes. J. Comput. Appl. Math. 300, 83–96 (2016)

    Article  MathSciNet  Google Scholar 

  28. Saad, Y., Schultz, M.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7 (3), 856–869 (1986)

    Article  MathSciNet  Google Scholar 

  29. Tour, G., Thakoor, N., Khaliq, A.Q.M., Tangman, D.Y.: COS Method for option pricing under a regime-switching model with time-changed Levý processes. Quant. Financ. 18, 673–692 (2018)

    Article  Google Scholar 

  30. Wang, W., Chen, X., Ding, D., Lei, S.: Circulant preconditioning technique for barrier options pricing under fractional diffusion models. Int. J. Comput. Math. 92(12), 2596–2614 (2015)

    Article  MathSciNet  Google Scholar 

  31. Yousuf, M., Khaliq, A.Q.M., Alrabeei, S.: Solving complex PIDE systems for pricing American option under multi-state regime switching jump–diffusion model. Comput. Math. Appl. 75, 2989–3001 (2018)

    Article  MathSciNet  Google Scholar 

  32. Zhang, H., Liu, F., Chen, S., Anh, V., Chen, J.: Fast numerical simulation of a new time-space fractional option pricing model governing European call option. Appl. Math. Comput. 339, 186–198 (2018)

    Article  MathSciNet  Google Scholar 

  33. Zhang, H., Liu, F., Turner, I., Chen, S.: The numerical simulation of the tempered fractional Black-Scholes equation for European double barrier option. Appl. Math. Model. 40(11), 5819–5834 (2016)

    Article  MathSciNet  Google Scholar 

  34. Zhang, H., Liu, F., Turner, I., Chen, S., Yang, Q.: Numerical simulation of a Finite Moment Log Stable model for a European call option. Numer. Algor. 75, 569–585 (2017)

    Article  MathSciNet  Google Scholar 

  35. Zhou, Z., Ma, J., Gao, X.: Convergence of iterative Laplace transform methods for a system of fractional PDEs and PIDEs arising in option pricing. East Asian J. Appl. Math. 8, 782–808 (2018)

    Article  MathSciNet  Google Scholar 

  36. Zhou, Z., Ma, J., Sun, H.: Fast Laplace transform methods for free-boundary problems of fractional diffusion equations. J. Sci. Comput. 74, 49 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors want to thank the reviewers and editor for their valuable suggestions which do improve the quality of this paper.

Funding

The first author is funded by Natural Science Foundation of Guangdong Province (Grant no. 2017A030313400). The second author is funded by The Science and Technology Development Fund, Macau SAR (File no. 081/2016/A2). The third author is funded by University of Macau (MYRG2018-00025-FST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siu-Long Lei.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In Appendix, the steps for obtaining \({\mathcal L}_{s} F(x,t)\) in (2) are presented. By the definition of F(x, t), we have:

$$ \begin{array}{@{}rcl@{}} F(x,t)&=&\frac{V_{s}(x_{r},t)-V_{s}(x_{l},t)}{e^{x_{r}}-e^{x_{l}}}(e^{x}-e^{x_{l}})+V_{s}(x_{l},t)\\ &=&d_{s, 1} e^{x}+d_{s, 2}, \end{array} $$

where \(d_{s, 1}=\frac {V_{s}(x_{r},t)-V_{s}(x_{l},t)}{e^{x_{r}}-e^{x_{l}}}\) and \(d_{s, 2}=V_{s}(x_{l},t)-\frac {V_{s}(x_{r},t)-V_{s}(x_{l},t)}{e^{x_{r}}-e^{x_{l}}}e^{x_{l}}\). To obtain \({\mathcal L}_{s} F(x,t)\), the most difficult step is to calculate \(D^{\xi _{s},\alpha _{s}}_{+}[d_{s, 1}e^{x}]\), \(D^{\xi _{s},\alpha _{s}}_{+}[d_{s, 2}]\), \(D^{\lambda _{s},\alpha _{s}}_{-}[d_{s, 1}e^{x}]\), \(D^{\lambda _{s},\alpha _{s}}_{-}[d_{s, 2}]\). In fact, they can be obtained by the following deduction:

$$ \begin{array}{@{}rcl@{}} D^{\lambda_{s},\alpha_{s}}_{-}[d_{s, 1} e^{x}]&=&\frac{e^{-\lambda_{s} x}}{\Gamma(2-\alpha_{s})}\frac{\partial^{2}}{\partial x^{2}}{\int}^{x}_{-\infty}\frac{d_{s, 1} e^{\lambda_{s}\zeta}e^{\zeta}}{(x-\zeta)^{\alpha_{s}-1}}d\zeta-\lambda_{s}^{\alpha_{s}} d_{s, 1} e^{x}\\ &=&\frac{e^{-\lambda_{s} x}}{\Gamma(2-\alpha_{s})}\frac{\partial^{2}}{\partial x^{2}} \Big[d_{s, 1}{\int}^{\infty}_{0} e^{(\lambda_{s}+1)(x-y)}y^{1-\alpha_{s}}dy\Big]-\lambda_{s}^{\alpha_{s}} d_{s, 1} e^{x} \\ &=&\frac{e^{-\lambda_{s} x}}{\Gamma(2-\alpha_{s})}\frac{\partial^{2}}{\partial x^{2}}\Big[d_{s, 1} e^{(\lambda_{s}+1)x} {\int}^{\infty}_{0} e^{-(\lambda_{s}+1)y}y^{1-\alpha_{s}}dy\Big]-\lambda_{s}^{\alpha_{s}} d_{s, 1} e^{x}\\ &=&\frac{e^{-\lambda_{s} x}}{\Gamma(2-\alpha_{s})}\frac{\partial^{2}}{\partial x^{2}}\Big[d_{s, 1} e^{(\lambda_{s}+1)x} {\int}^{\infty}_{0} e^{-\mu}\mu^{1-\alpha_{s}}(\lambda_{s}+1)^{\alpha_{s}-2}d\mu\Big]\\&&-\lambda_{s}^{\alpha_{s}} d_{s, 1} e^{x}\\ &=&\frac{e^{-\lambda_{s} x}}{\Gamma(2-\alpha_{s})}\frac{\partial^{2}}{\partial x^{2}}\Big[d_{s, 1} e^{(\lambda_{s}+1)x} (\lambda_{s}+1)^{\alpha_{s}-2}{\Gamma}(2-\alpha_{s})\Big]-\lambda_{s}^{\alpha_{s}} d_{s, 1} e^{x}\\ &=&d_{s, 1} (\lambda_{s}+1)^{\alpha_{s}} e^{x}-\lambda_{s}^{\alpha_{s}} d_{s, 1} e^{x}, \end{array} $$
$$ \begin{array}{@{}rcl@{}} D^{\lambda_{s},\alpha_{s}}_{-}[{d_{s, 2}}]&=&\frac{e^{-\lambda_{s} x}}{\Gamma(2-\alpha_{s})}\frac{\partial^{2}}{\partial x^{2}}{\int}^{x}_{-\infty}\frac{d_{s, 2} e^{\lambda_{s}\zeta}}{(x-\zeta)^{\alpha_{s}-1}}d\zeta-\lambda_{s}^{\alpha_{s}} d_{s, 2}\\ &=&\frac{e^{-\lambda_{s} x}}{\Gamma(2-\alpha_{s})}\frac{\partial^{2}}{\partial x^{2}} \Big[d_{s, 2}{\int}^{\infty}_{0} e^{\lambda_{s}(x-y)}y^{1-\alpha_{s}}dy\Big]-\lambda_{s}^{\alpha_{s}} d_{s, 2}\\ &=&\frac{e^{-\lambda_{s} x}}{\Gamma(2-\alpha_{s})}\frac{\partial^{2}}{\partial x^{2}}\Big[d_{s, 2} e^{\lambda_{s} x} {\int}^{\infty}_{0} e^{-\lambda_{s} y}y^{1-\alpha_{s}}dy\Big]-\lambda_{s}^{\alpha_{s}} d_{s, 2}\\ &=&\frac{e^{-\lambda_{s} x}}{\Gamma(2-\alpha_{s})}\frac{\partial^{2}}{\partial x^{2}}\Big[d_{s, 2} e^{\lambda_{s} x} {\int}^{\infty}_{0} e^{-\mu}\mu^{1-\alpha_{s}}\lambda^{\alpha_{s}-2}d\mu\Big]-\lambda_{s}^{\alpha_{s}} d_{s, 2}\\ &=&\frac{e^{-\lambda_{s} x}}{\Gamma(2-\alpha_{s})}\frac{\partial^{2}}{\partial x^{2}}\Big[d_{s, 2} e^{\lambda_{s} x} \lambda^{\alpha_{s}-2}{\Gamma}(2-\alpha_{s})\Big]-\lambda_{s}^{\alpha_{s}} d_{s, 2}\\ &=&d_{s, 2} \lambda_{s}^{\alpha_{s}}-\lambda_{s}^{\alpha_{s}} d_{s, 2}=0, \end{array} $$
$$ \begin{array}{@{}rcl@{}} D^{\xi_{s},\alpha_{s}}_{+}[d_{s, 1} e^{x}]&=&\frac{e^{\xi_{s} x}}{\Gamma(2-\alpha_{s})}\frac{\partial^{2}}{\partial x^{2}}{\int}^{\infty}_{x}\frac{d_{s, 1} e^{-\xi_{s}\zeta}e^{\zeta}}{(\zeta-x)^{\alpha_{s}-1}}d\zeta-\xi_{s}^{\alpha_{s}}d_{s, 1}e^{x}\\ &=&\frac{e^{\xi_{s} x}}{\Gamma(2-\xi_{s})}\frac{\partial^{2}}{\partial x^{2}}\Big[d_{s, 1}{\int}^{\infty}_{0} e^{(1-\xi_{s})(x+y)}y^{1-\alpha_{s}}dy\Big]-\xi_{s}^{\alpha_{s}}d_{s, 1}e^{x}\\ &=&\frac{e^{\xi_{s} x}}{\Gamma(2-\alpha_{s})}\frac{\partial^{2}}{\partial x^{2}}\Big[d_{s, 1} e^{(1-\xi_{s})x}{\int}^{\infty}_{0} e^{-(\xi_{s}-1)y}y^{1-\alpha_{s}}dy\Big]-\xi_{s}^{\alpha_{s}}d_{s, 1}e^{x}\\ &=&\frac{e^{\xi_{s} x}}{\Gamma(2-\alpha_{s})}\frac{\partial^{2}}{\partial x^{2}}\Big[d_{s, 1} e^{(1-\xi_{s})x}{\int}^{\infty}_{0} e^{-\mu}\mu^{1-\alpha_{s}}(\xi_{s}-1)^{\alpha_{s}-2}d\mu\Big]\\&&-\xi_{s}^{\alpha_{s}}d_{s, 1}e^{x}\\ &=&\frac{e^{\xi_{s} x}}{\Gamma(2-\alpha_{s})}\frac{\partial^{2}}{\partial x^{2}}\Big[d_{s, 1} e^{(1-\xi_{s})x} (\xi_{s}-1)^{\alpha_{s}-2}{\Gamma}(2-\alpha_{s})\Big]-\xi_{s}^{\alpha_{s}}d_{s, 1}e^{x}\\ &=&d_{s, 1} (\xi_{s}-1)^{\alpha_{s}} e^{x}-\xi_{s}^{\alpha_{s}}d_{s, 1}e^{x}, \end{array} $$
$$ \begin{array}{@{}rcl@{}} D^{\xi_{s},\alpha_{s}}_{+}[d_{s, 2}]&=&\frac{e^{\xi_{s} x}}{\Gamma(2-\alpha_{s})}\frac{\partial^{2}}{\partial x^{2}}{\int}^{\infty}_{x}\frac{d_{s, 2} e^{-\xi_{s}\zeta}}{(\zeta-x)^{\alpha_{s}-1}}d\zeta-\xi_{s}^{\alpha_{s}}d_{s, 2}\\ &=&\frac{e^{\xi_{s} x}}{\Gamma(2-\alpha_{s})}\frac{\partial^{2}}{\partial x^{2}}\Big[d_{s, 2}{\int}^{\infty}_{0} e^{-\xi_{s}(x+y)}y^{1-\alpha_{s}}dy\Big]-\xi_{s}^{\alpha_{s}}d_{s, 2}\\ &=&\frac{e^{\xi_{s} x}}{\Gamma(2-\alpha_{s})}\frac{\partial^{2}}{\partial x^{2}}\Big[d_{s, 2} e^{-\xi_{s} x}{\int}^{\infty}_{0} e^{-\xi_{s} y}y^{1-\alpha_{s}}dy\Big]-\xi_{s}^{\alpha_{s}}d_{s, 2}\\ &=&\frac{e^{\xi_{s} x}}{\Gamma(2-\alpha_{s})}\frac{\partial^{2}}{\partial x^{2}}\Big[d_{s, 2} e^{-\xi_{s} x}{\int}^{\infty}_{0} e^{-\mu}\mu^{1-\alpha}{\xi_{s}}^{\alpha_{s}-2}d\mu\Big]-\xi_{s}^{\alpha_{s}}d_{s, 2}\\ &=&\frac{e^{\xi_{s} x}}{\Gamma(2-\alpha_{s})}\frac{\partial^{2}}{\partial x^{2}}\Big[d_{s, 2} e^{-\xi_{s} x} {\xi_{s}}^{\alpha_{s}-2}{\Gamma}(2-\alpha_{s})\Big]-\xi_{s}^{\alpha_{s}}d_{s, 2}\\ &=&d_{s, 2} {\xi_{s}}^{\alpha_{s}}-\xi_{s}^{\alpha_{s}}d_{s, 2}=0. \end{array} $$

For European call options, by assuming that Vs(xl, t) = 0 and \(V_{s}(x_{r},t)=e^{x_{r}}-Ke^{-r(T-t)}\), we have

$$ \begin{array}{@{}rcl@{}} {\mathcal L}_{s} F(x,t)&=&\frac{\partial F(x,t)}{\partial t}+c_{s, 1}\frac{\partial F(x,t)}{\partial x}+c_{s, 2}D^{\xi_{s},\alpha_{s}}_{+}F(x,t)\\ &&+c_{s, 3}D^{\lambda_{s},\alpha_{s}}_{-}F(x,t)-rF(x,t)+\sum\limits_{j=1}^{\bar{S}}q_{s,j}F(x,t)\\ &=&\frac{\partial d_{s, 1}}{\partial t}e^{x}+\frac{\partial d_{s, 2}}{\partial t}+c_{s, 1}d_{s, 1}e^{x} +c_{s, 2}[d_{s, 1}(\xi_{s}-1)^{\alpha_{s}}e^{x}-d_{s, 1}\xi_{s}^{\alpha_{s}}e^{x}]\\ &&+c_{s, 3}[d_{s, 1}(\lambda_{s}+1)^{\alpha_{s}}e^{x}-d_{s, 1}\lambda_{s}^{\alpha_{s}}e^{x}]-r(d_{s, 1}e^{x}+d_{s, 2})\\ &=&\frac{rKe^{-r(T-t)}}{e^{x_{r}}-e^{x_{l}}}(e^{x_{l}} - e^{x})+d_{s, 1}[c_{s, 1}+c_{s, 2}(\xi_{s} - 1)^{\alpha_{s}} +c_{s, 3}(\lambda_{s}+1)^{\alpha_{s}}]e^{x}\\ &&-(c_{s, 2}\xi_{s}^{\alpha_{s}}+c_{s, 3}\lambda_{s}^{\alpha_{s}}+r)d_{s, 1}e^{x}-rd_{s, 2}. \end{array} $$

Hence, fs(x, t) can be obtained analytically. For European put options, fs(x, t) can be obtained similarly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Ding, D., Lei, SL. et al. An implicit-explicit preconditioned direct method for pricing options under regime-switching tempered fractional partial differential models. Numer Algor 87, 939–965 (2021). https://doi.org/10.1007/s11075-020-00994-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00994-7

Keywords

Mathematics Subject Classification (2010)

Navigation