Skip to main content
Log in

Interpolation of sparse high-dimensional data

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Increases in the quantity of available data have allowed all fields of science to generate more accurate models of multivariate phenomena. Regression and interpolation become challenging when the dimension of data is large, especially while maintaining tractable computational complexity. Regression is a popular approach to solving approximation problems with high dimension; however, there are often advantages to interpolation. This paper presents a novel and insightful error bound for (piecewise) linear interpolation in arbitrary dimension and contrasts the performance of some interpolation techniques with popular regression techniques. Empirical results demonstrate the viability of interpolation for moderately high-dimensional approximation problems, and encourage broader application of interpolants to multivariate approximation in science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, GS., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G, Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/. Software available from tensorflow.org (2015)

  2. Barthelmann, V., Novak, E., Ritter, K.: High dimensional polynomial interpolation on sparse grids. Adv. Comput. Math. 12(4), 273–288 (2000)

    Article  MathSciNet  Google Scholar 

  3. Basak, D., Pal, S., Patranabis, D.C.: Support vector regression. Neural. Inf. Process-Lett. Rev. 11(10), 203–224 (2007)

    Google Scholar 

  4. Bengio, Y., Grandvalet, Y.: No unbiased estimator of the variance of k-fold cross-validation. J. Mach. Learn. Res. 5(Sep), 1089–1105 (2004)

    MathSciNet  MATH  Google Scholar 

  5. de Boor, C.: A Practical Guide to Splines, vol. 27. Springer, New York (1978)

    Book  Google Scholar 

  6. de Boor, C., Höllig, K, Riemenschneider, S.: Box Splines, vol. 98. Springer Science & Business Media (2013)

  7. Bos, L., De Marchi, S., Sommariva, A., Vianello, M.: Computing multivariate Fekete and Leja points by numerical linear algebra. SIAM J. Numer. Anal. 48(5), 1984–1999 (2010)

    Article  MathSciNet  Google Scholar 

  8. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)

    Article  MathSciNet  Google Scholar 

  9. Cameron, K.W., Anwar, A., Cheng, Y., Xu, L., Li, B., Ananth, U., Bernard, J., Jearls, C., Lux, T.C.H., Hong, Y., Watson, L.T., Butt, A.R.: Moana: modeling and analyzing i/o variability in parallel system experimental design. IEEE Trans. Parallel Distrib. Syst.. https://doi.org/10.1109/TPDS.2019.2892129 (2019)

  10. Chang, T.H., Watson, L.T., Lux, T.C.H., Li, B., Xu, L., Butt, A.R., Cameron, K.W., Hong, Y.: A polynomial time algorithm for multivariate interpolation in arbitrary dimension via the Delaunay triangulation. In: Proceedings of the ACMSE 2018 Conference, ACMSE ’18. ACM, New York, pp. 12:1–12:8. https://doi.org/10.1145/3190645.3190680 (2018)

  11. Cheney, E.W., Light, W.A.: A Course in Approximation Theory, vol. 101. American Mathematical Soc (2009)

  12. Chkifa, A., Cohen, A., Schwab, C.: High-dimensional adaptive sparse polynomial interpolation and applications to parametric pdes. Found. Comput. Math. 14(4), 601–633 (2014)

    Article  MathSciNet  Google Scholar 

  13. Chollet, F., et al.: Keras. https://keras.io (2015)

  14. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (elus). arXiv:1511.07289 (2015)

  15. Cortez, P., Morais, AdJR: A data mining approach to predict forest fires using meteorological data. 13th Portuguese Conference on Artificial Intelligence (2007)

  16. Cortez, P., Silva, A.M.G.: Using data mining to predict secondary school student performance. Proceedings of 5th Annual Future Business Technology Conference Porto (2008)

  17. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory. 13(1), 21–27 (1967)

    Article  Google Scholar 

  18. Dahl, G.E., Sainath, T.N., Hinton, G.E.: Improving deep neural networks for Lvcsr using rectified linear units and dropout. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013. IEEE, pp. 8609–8613 (2013)

  19. De Vito, S., Massera, E., Piga, M., Martinotto, L., Di Francia, G.: On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario. Sens. Actuators B 129(2), 750–757 (2008)

    Article  Google Scholar 

  20. Dennis, J.E. Jr., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations, vol. 16. Siam (1996)

  21. Dirichlet, G.L.: ÜBer die reduction der positiven quadratischen formen mit drei unbestimmten ganzen zahlen. J. Reine. Angewandte Math. 40, 209–227 (1850)

    MathSciNet  Google Scholar 

  22. Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat.:1–67 (1991)

  23. Friedman, J.H.: The Computational Statistics Laboritory of Stanford University: Fast mars (1993)

  24. Fritsch, F.N., Carlson, R.E.: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal. 17(2), 238–246 (1980)

    Article  MathSciNet  Google Scholar 

  25. Goh, G.: Why momentum really works. Distill. https://doi.org/10.23915/distill.00006. http://distill.pub/2017/momentum (2017)

  26. Gordon, W.J., Wixom, J.A.: Shepard’s method of “metric interpolation” to bivariate and multivariate interpolation. Math. Comput. 32(141), 253–264 (1978)

    MathSciNet  MATH  Google Scholar 

  27. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural. Netw. 2(5), 359–366 (1989)

    Article  Google Scholar 

  28. Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: IJCAI, vol. 14, Montreal, pp. 1137–1145 (1995)

  29. Kövari, T, Pommerenke, C.: On the distribution of fekete points. Mathematika 15(1), 70–75 (1968)

    Article  MathSciNet  Google Scholar 

  30. Lazos, D., Sproul, A.B., Kay, M.: Optimisation of energy management in commercial buildings with weather forecasting inputs: a review. Renew. Sustain. Energy. Rev. 39, 587–603 (2014)

    Article  Google Scholar 

  31. Lee, D.T., Schachter, B.J.: Two algorithms for constructing a Delaunay triangulation. Int. J. Comput. Inf. Sci. 9(3), 219–242 (1980)

    Article  MathSciNet  Google Scholar 

  32. Lilliefors, H.W.: On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 62(318), 399–402 (1967)

    Article  Google Scholar 

  33. Lux, T.C.H., Pittman, R., Shende, M., Shende, A.: Applications of supervised learning techniques on undergraduate admissions data. In: Proceedings of the ACM International Conference on Computing Frontiers. ACM, pp. 412–417 (2016)

  34. Lux, T.C.H., Watson, L.T., Chang, T.H., Bernard, J., Li, B., Yu, X., Xu, L., Back, G., Butt, A.R., Cameron, K.W., et al: Nonparametric Distribution Models for Predicting and Managing Computational Performance Variability. In: Southeastcon 2018. IEEE, pp. 1–7 (2018)

  35. Lux, T.C.H., Watson, L.T., Chang, T.H., Bernard, J., Li, B., Yu, X., Xu, L., Back, G., Butt, A.R., Cameron, K.W., et al.: Novel meshes for multivariate interpolation and approximation. In: Proceedings of the ACMSE 2018 Conference. ACM, pp. 13 (2018)

  36. Migliorati, G., Nobile, F., von Schwerin, E., Tempone, R.: Approximation of quantities of interest in stochastic pdes by the random discrete lˆ2 projection on polynomial spaces. SIAM J. Sci. Comput. 35(3), A1440–A1460 (2013)

    Article  MathSciNet  Google Scholar 

  37. Møller, MF: A scaled conjugate gradient algorithm for fast supervised learning. Neural. Netw. 6(4), 525–533 (1993)

    Article  Google Scholar 

  38. Navidi, W.C.: Statistics for Engineers and Scientists, 4 edn. McGraw-Hill Education (2015)

  39. Nobile, F., Tamellini, L., Tempone, R.: Convergence of quasi-optimal sparse-grid approximation of hilbert-space-valued functions: application to random elliptic pdes. Numer. Math. 134(2), 343–388 (2016)

    Article  MathSciNet  Google Scholar 

  40. Norcott, W.D.: Iozone filesystem benchmark. http://www.iozone.org. [Online; Accessed 12 Oct 2017] (2017)

  41. Park, J.S.: Optimal latin-hypercube designs for computer experiments. J. Stat. Plann. Inference. 39(1), 95–111 (1994)

    Article  MathSciNet  Google Scholar 

  42. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  43. Pozzolo, A.D., Caelen, O., Johnson, R.A., Bontempi, G.: Calibrating probability with undersampling for unbalanced classification. In: IEEE Symposium Series on Computational Intelligence. IEEE, pp. 159–166. https://doi.org/10.1109/SSCI.2015.33. https://www.kaggle.com/mlg-ulb/creditcardfraud. [Online; Accessed 25 Jan 2019] (2015)

  44. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat.:400–407 (1951)

  45. Rudy, J., Cherti, M.: Py-earth: a python implementation of multivariate adaptive regression splines. https://github.com/scikit-learn-contrib/py-earth. [Online; Accessed 09 Jul 2017] (2017)

  46. Rumelhart, D.E., Hinton, G.E., Williams, R.J., et al.: Learning representations by back-propagating errors. Cogn. Model. 5(3), 1 (1988)

    MATH  Google Scholar 

  47. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM National Conference. ACM, pp 517–524 (1968)

  48. Thacker, W.I., Zhang, J., Watson, L.T., Birch, J.B., Iyer, M.A., Berry, M.W.: Algorithm 905: Sheppack: modified Shepard algorithm for interpolation of scattered multivariate data. ACM Trans. Math. Softw. (TOMS) 37 (3), 34 (2010)

    Article  Google Scholar 

  49. Tsanas, A., Little, M.A., McSharry, P.E., Ramig, L.O.: Accurate telemonitoring of parkinson’s disease progression by noninvasive speech tests. IEEE Trans. Biomed. Eng. 57(4), 884–893 (2010)

    Article  Google Scholar 

  50. Unther Greiner, G., Hormann, K.: Interpolating and approximating scattered 3d-data with hierarchical tensor product b-splines. In: Proceedings of Chamonix, p. 1 (1996)

  51. Williams, G.J.: Weather dataset rattle package. In: Rattle: A Data Mining GUI for R, vol. 1. The R Journal, pp. 45–55. https://www.kaggle.com/jsphyg/weather-dataset-rattle-package. [Online; Accessed 25 Jan 2019] (2009)

Download references

Funding

This work was supported by the National Science Foundation Grants CNS-1565314 and CNS-1838271.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. H. Lux.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Statistical Terminology

A random variable X is precisely defined by its cumulative distribution function (CDF) FX and the derivative of the CDF, the probability density function (PDF) fX. For any possible value x of X, the percentile of x is 100 FX(x), the percentage of values drawn from X that would be less than or equal to x as the number of samples tends towards infinity. The quartiles of X are its 25th, 50th (median), and 75th percentiles. The absolute difference between the median and an adjacent quartile is an interquartile range. Given an independent and identically distributed sample from X and presuming that X has finite mean and variance, a confidence interval can be drawn about any percentile estimated from the sample. A confidence interval describes the probability that a value lies within an interval. The null hypothesis is a statement (derived from some test statistic) that the expected value of the observed statistic is equal to an assumed population statistic. The p value of a given statistic value ρ for a given data set (sample from a distribution) is the probability of observing a statistic at least as extreme as ρ for other data sets (samples from that same distribution), assuming the null hypothesis holds. The smaller the p value, the stronger the statistical evidence is for rejecting the null hypothesis. For a more detailed introduction to statistics and related terminology, see the work of Navidi [38].

Raw Numerical Results

The tables that follow show the precise experimental results for all data sets presented in Section 6. The tests were all run serially on an otherwise idle machine with a CentOS 6.10 operating system and an Intel i7-3770 CPU operating at 3.4 GHz. The detailed performance results in the tables that follow are very much dependent on the problem and the algorithm implementation (e.g., some codes are TOMS software, some industry distributions, and others are from conference paper venues). Different typeface is used to show best performers, however not much significance should be attached to ranking algorithms based on small time (millisecond) differences. The results serve as a demonstration of conceptual validity.

Fig. 20
figure 20

Scatter plots for predicted versus actual values for the top three models on each of the four real-valued approximation problems. Top left is forest fire data, top right is Parkinson’s data, bottom left is rainfall data, and bottom right is credit card transaction data. Each approximation algorithm has a unique style and the top three algorithms are listed in order of ranking in the legends. There are a large of number of 0-valued entries in the forest fire and rainfall data sets that are not included in the visuals making the true ranking of the models appear to disagree with the observed outcomes

Table 3 This numerical data accompanies the visual provided in Fig. 10
Table 4 The left above shows how often each algorithm had the lowest absolute error approximating forest fire data in Table 3
Table 5 This numerical data accompanies the visual provided in Fig. 12
Table 6 The left above shows how often each algorithm had the lowest absolute error approximating Parkinson’s data in Table 5
Table 7 This numerical data accompanies the visual provided in Fig. 14
Table 8 Left table shows how often each algorithm had the lowest absolute error approximating Sydney rainfall data in Table 7
Table 9 This numerical data accompanies the visual provided in Fig. 16
Table 10 The left above shows how often each algorithm had the lowest absolute error approximating credit card transaction data in Table 9
Table 11 This numerical data accompanies the visual provided in Fig. 18
Table 12 The left above shows how often each algorithm had the lowest KS statistic on the I/O throughput distribution data in Table 11

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lux, T.C.H., Watson, L.T., Chang, T.H. et al. Interpolation of sparse high-dimensional data. Numer Algor 88, 281–313 (2021). https://doi.org/10.1007/s11075-020-01040-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-01040-2

Keywords

Navigation