Skip to main content
Log in

Weak Galerkin finite element methods with or without stabilizers

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The purpose of this paper is to investigate the connections between the weak Galerkin (WG) methods with and without stabilizers. The choices of stabilizers directly affect the convergence rates of the corresponding WG methods in general. However, we observed that the convergence rates are independent of the choices of stabilizers for these WG elements with stabilizers being optional. In this paper, we will verify such phenomena theoretically as well as numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Al-Taweel, A., Wang, X.: A note on the optimal degree of the weak gradient of the stabilizer free weak Galerkin finite element method. Appl. Numer. Math. 150, 444–451 (2020)

    Article  MathSciNet  Google Scholar 

  2. Hu, X., Mu, L., Ye, X.: A weak Galerkin finite element method for the Navier-Stokes equations on polytopal meshes. J. of Computational and Applied Mathematics 362, 614–625 (2019)

    Article  MathSciNet  Google Scholar 

  3. Lin, R., Ye, X., Zhang, S., Zhu, P.: A weak Galerkin finite element method for singularly perturbed convection-diffusion-reaction problems. SINUM 56, 1482–1497 (2018)

    Article  MathSciNet  Google Scholar 

  4. Lin, G., Liu, J., Mu, L., Ye, X.: Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity. J. Comput. Phy. 276, 422–437 (2014)

    Article  MathSciNet  Google Scholar 

  5. Mu, L., Wang, J., Ye, X.: Weak Galerkin finite element method for the Helmholtz equation with large wave number on polytopal meshes. IMA J. Numer. Anal. 35, 1228–1255 (2015)

    Article  MathSciNet  Google Scholar 

  6. Mu, L., Wang, J., Ye, X.: A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods. J. of Computational Physics 273, 327–342 (2014)

    Article  MathSciNet  Google Scholar 

  7. Mu, L., Wang, J., Ye, X.: A weak Galerkin finite element method for biharmonic equations on polytopal meshes. Numer. Meth. Partial Diff. Eq. 30, 1003–1029 (2014)

    Article  MathSciNet  Google Scholar 

  8. Mu, L., Wang, J., Ye, X.: Weak Galerkin finite element method for second-order elliptic problems on polytopal meshes. Int. J. Numer. Anal. Model. 12, 31–53 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Mu, L., Wang, J., Ye, X., Zhang, S.: A weak Galerkin finite element method for the Maxwell equations. J. Sci. Comput. 65, 363–386 (2015)

    Article  MathSciNet  Google Scholar 

  10. Mu, L., Wang, J., Ye, X., Zhao, S.: A new weak Galerkin finite element method for elliptic interface problems. J. Comput. Phy. 325, 157–173 (2016)

    Article  MathSciNet  Google Scholar 

  11. Shields, S., Li, J., Machorro, E.A.: Weak Galerkin methods for time-dependent Maxwell’s equations. Comput. Math. Appl. 74, 2106–2124 (2017)

    Article  MathSciNet  Google Scholar 

  12. Wang, C., Wang, J.: Discretization of div–curl systems by weak Galerkin finite element methods on polyhedral partitions. J. Sci. Comput. 68, 1144–1171 (2016)

    Article  MathSciNet  Google Scholar 

  13. Wang, J., Wang, X., Ye, X., Zhang, S., Zhu, P., Introduction of a special weak Galerkin element on rectangular/cuboid mesh, preprint

  14. Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103–115 (2013)

    Article  MathSciNet  Google Scholar 

  15. Wang, J., Ye, X.: A Weak Galerkin mixed finite element method for second-order elliptic problems. Math. Comp. 83, 2101–2126 (2014)

    Article  MathSciNet  Google Scholar 

  16. Wang, J., Ye, X.: A weak Galerkin finite element method for the Stokes equations. Adv. in Comput. Math. 42, 155–174 (2016)

    Article  MathSciNet  Google Scholar 

  17. Wang, J., Ye, X., Zhang, S.: Numerical investigation on weak Galerkin finite elements. Int. J. Numer. Anal. Model. 17(4), 517–531 (2020)

    MathSciNet  Google Scholar 

  18. Ye, X., Zhang, S.: A stabilizer-free weak Galerkin finite element method on polytopal meshes. J. Comput. Appl. Math. 372, 112699 (2020). arXiv:1906.06634

    Article  MathSciNet  Google Scholar 

  19. Ye, X., Zhang, S., Zhu, Y., Stabilizer-free weak Galerkin methods for monotone quasilinear elliptic PDEs, Results in Applied Mathematics, https://doi.org/10.1016/j.rinam.2020.100097

Download references

Funding

This research was supported in part by National Science Foundation Grant DMS-1620016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangyou Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ye, X. & Zhang, S. Weak Galerkin finite element methods with or without stabilizers. Numer Algor 88, 1361–1381 (2021). https://doi.org/10.1007/s11075-021-01079-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01079-9

Keywords

Mathematics Subject Classication (2010)