Skip to main content
Log in

A class of new Magnus-type methods for semi-linear non-commutative Itô stochastic differential equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, a class of new Magnus-type methods is proposed for non-commutative Itô stochastic differential equations (SDEs) with semi-linear drift term and semi-linear diffusion terms, based on Magnus expansion for non-commutative linear SDEs. We construct a Magnus-type Euler method, a Magnus-type Milstein method and a Magnus-type Derivative-free method, and give the mean-square convergence analysis of these methods. Numerical tests are carried out to present the efficiency of the proposed methods compared with the corresponding underlying methods and the specific performance of the simulation Itô integral algorithms is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Debrabant, K., Kværnø, A., Mattsson, N.C.: Runge–Kutta Lawson schemes for stochastic differential equations. arXiv:1909.11629 (2019)

  2. Erdoǧan, U., Lord, G.J.: A new class of exponential integrators for SDEs with multiplicative noise. IMA J. Numer. Anal. 39, 820–846 (2019)

    Article  MathSciNet  Google Scholar 

  3. Yang, G., Burrage, K., Ding, X.: A new class of structure-preserving stochastic exponential Runge–Kutta integrators for stochastic differential equations. (Submitted)

  4. Komori, Y., Burrage, K.: A stochastic exponential Euler scheme for simulation of stiff biochemical reaction systems. BIT Numer Math. 54, 1067–1085 (2014)

    Article  MathSciNet  Google Scholar 

  5. Komori, Y., Cohen, D., Burrage, K.: Weak second order explicit exponential Runge–Kutta methods for stochastic differential equations. SIAm J. Sci. Comput. 39, A2857–A2878 (2017)

    Article  MathSciNet  Google Scholar 

  6. Magnus, W.: On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Math. 7, 649–673 (1954)

    Article  MathSciNet  Google Scholar 

  7. Khanamiryan, M.: Modified Magnus expansion in application to highly oscillatory differential equations. BIT Numer. Math. 52, 383–405 (2012)

    Article  MathSciNet  Google Scholar 

  8. Iserles, A., Nørsett, SP: On the solution of linear differential equations in Lie groups. Phil. Trans. R. Soc. 357, 983–1019 (1999)

    Article  MathSciNet  Google Scholar 

  9. Iserles, A., MacNamara, S.: Applications of Magnus expansions and pseudospectra to Markov processes. Eur. J. Appl. Math. 30, 400–425 (2019)

    Article  MathSciNet  Google Scholar 

  10. Burrage, K., Burrage, P.M.: High strong order methods for non-commutative stochastic ordinary differential equation systems and the Magnus formula. Phys. D Nonlinear Phenom. 133, 34–48 (1999)

    Article  MathSciNet  Google Scholar 

  11. Wang, Z., Ma, Q., Yao, Z., Ding, X.: The Magnus expansion for stochastic differential equations. J. Nonlinear Sci. 30, 419–447 (2020)

    Article  MathSciNet  Google Scholar 

  12. Wang, X., Guan, X., Yin, P.: A new explicit Magnus expansion for nonlinear stochastic differential equations. Mathematics 8, 183 (2020)

    Article  Google Scholar 

  13. Kamm, K., Pagliaraniy, S., Pascucciz, A.: On the stochastic Magnus expansion and its application to SPDEs. arXiv:2001.01098 (2020)

  14. Tambue, A., Mukam, J.D.: Magnus-type integrator for non-autonomous SPDEs driven by multiplicative noise. Discrete Contin. Dyn. Syst. Ser. A. 40, 4597–4624 (2020)

    Article  MathSciNet  Google Scholar 

  15. Blanes, S., Casas, F., Oteo, J.A., Ros, J.: The Magnus expansion and some of its applications. Phys. Rep. Rev. Sect. Phys. Lett. 470, 151–238 (2009)

    MathSciNet  Google Scholar 

  16. Mao, X.: Stochastic differential equations and applications. Horwood, Chichester (2007)

    MATH  Google Scholar 

  17. Burrage, P.M.: Runge–Kutta methods for stochastic differential equations. Ph.D. Thesis, Dept. Maths., Univ. Queensland (1999)

  18. Gard, T.C.: Introduction to Stochastic Differential Equations. Marcel Dekker Inc, New York-Basel (1988)

    MATH  Google Scholar 

  19. Milstein, G.N.: Numerical integration of stochastic differential equations. Kluwer Academic Publishers, Dordrecht (1995)

    Book  Google Scholar 

  20. Kuznetsov, D.F.: Development and application of the Fourier method for the numerical solution of Itô stochastic differential equations. Comput. Math. Math. Phys. 58, 1058–1070 (2018)

    Article  MathSciNet  Google Scholar 

  21. Kuznetsov, D.F.: A comparative analysis of efficiency of using the Legendre polynomials and trigonometric functions for the numerical solution of Itô stochastic differential equations. Comput. Math. Math. Phys. 59, 1236–1250 (2019)

    Article  MathSciNet  Google Scholar 

  22. Wiktorsson, M.: Joint characteristic function and simultaneous simulation of iterated Itô integrals for multiple independent Brownian motions. Ann. Appl. Probab. 11, 470–487 (2001)

    Article  MathSciNet  Google Scholar 

  23. Kloeden, P.E., Platen, E.: Numerical solution of stochastic differential equations. Applications of Mathematics: Stochastic Modelling and Applied Probability. Springer, Berlin (1995)

    Google Scholar 

  24. Debrabant, K., Kværnø, A., Mattsson, N.C.: Lawson schemes for highly oscillatory stochastic differential equations and conservation of invariants. arXiv:1909.12287 (2019)

  25. de Bouard, A.: Gazeau., M.: A diffusion approximation theorem for a nonlinear PDE with application to random birefringent optical fibers. Ann. Appl. Probab. 22, 2460–2504 (2012)

    Article  MathSciNet  Google Scholar 

  26. Berg, A., Cohen, D., Dujardin, G.: Exponential integrators for the stochastic Manakov equation. arXiv:2005.04978v1 (2020)

  27. Abdulle, A., Cirilli, S.: S-ROCK: Chebyshev methods for stiff stochastic differential equations. SIAM J. Sci. Comput. 30, 997–1014 (2008)

    Article  MathSciNet  Google Scholar 

  28. Komori, Y., Burrage, K.: Weak second order S-ROCK methods for Stratonovich stochastic differential equations. J. Comput. Appl. Math. 236, 2895–2908 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors appreciate the valuable comments of the referee.

Funding

Guoguo Yang was supported by China Scholarship Council (CSC) and the National Natural Science Foundation of China (No. 62073103 and 11701124) during his study at Queensland University of Technology. Yoshio Komori was partially supported for this work by JSPS Grant-in-Aid for Scientific Research 17K05369. Xiaohua Ding was partially supported by the National Key R&D Program of China (No. 2017YFC1405600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoguo Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A.1 The expansion of iterated Itô stochastic integrals based on the generalized multiple Fourier series

Let \(\left \{\phi _{j}(x)\right \}_{j=0}^{\infty }\) be an orthonormal basis of the space \(L_{2}\left (\left [t_{n}, t_{n+1}\right ]\right ).\) If the trigonometric series

$$ \phi_{j}(s)=\frac{1}{\sqrt{h}}\left\{\begin{array}{cc} 1, & j=0, \\ \sqrt{2} \sin \frac{2 \pi r\left( s-t_{n}\right)}{h}, & j=2 r-1, \\ \sqrt{2} \cos \frac{2 \pi r\left( s-t_{n}\right)}{h}, & j=2 r, \end{array}\right. $$

where r = 1, 2,…, are selected as an orthonormal basis, for the iterated Itô integral (7), using the expansion theorem in [20], the following representations are obtained,

$$ \begin{aligned} I_{ij}(t_{n}, t_{n}+h)=&\frac{1}{2}h\left[\zeta_{0}^{\left( j\right)} \zeta_{0}^{\left( i\right)}+\frac{1}{\pi} \sum\limits_{r=1}^{\infty} \frac{1}{r}\left\{\zeta_{2 r}^{\left( j\right)} \zeta_{2 r-1}^{\left( i\right)}-\zeta_{2 r-1}^{\left( j\right)} \zeta_{2 r}^{\left( i\right)}\right.\right.\\ &+\left.\left.\sqrt{2}\left( \zeta_{2 r-1}^{\left( j\right)} \zeta_{0}^{\left( i\right)}-\zeta_{0}^{\left( j\right)} \zeta_{2 r-1}^{\left( i\right)}\right)\right\}\right],~i\neq j, \end{aligned} $$
(A.1)

where \(\zeta _{0}^{(i)} \underset {=}{\text { def }} W_{i}(h)/\sqrt {h}\) and \(\zeta _{j}^{(i)} \underset {=}{\text { def }} {{\int \limits }_{t}^{T}} \phi _{j}(s) d W_{i}(s)\), i = 1,…,m. The expansion (A.1) coincides with Kloeden, Platen and Wright’s (1992) algorithm [23] based on Kahunen–Loève expansion and it converges to the iterated Itô integral (7) in the mean-square sense.

If orthonormal Legendre polynomials are selected as an orthonormal basis,

$$ \left\{\phi_{j}(s)\right\}_{j=0}^{\infty}, \phi_{j}(s)=\sqrt{\frac{2 j+1}{h}} P_{j}\left( \left( s-\frac{h}{2}\right) \frac{2}{h}\right) $$

the expansion is

$$ \begin{aligned} I_{ij}(t_{n}, t_{n}+h)=\frac{h}{2}\left[\zeta_{0}^{\left( i\right)} \zeta_{0}^{\left( j\right)}+\sum\limits_{r=1}^{\infty} \frac{1}{\sqrt{4 r^{2}-1}}\left\{\zeta_{r-1}^{\left( i\right)} \zeta_{r}^{\left( j\right)}-\zeta_{r}^{\left( i\right)} \zeta_{r-1}^{\left( j\right)}\right\}\right]. \end{aligned} $$
(A.2)

As the expansions (A.1) and (A.2) are infinite series, we need to truncate them for practical simulation. During the implementation of the Milstein and MM methods, the mean-square error of the approximated iterated integrals should not be larger than h3, which is to ensure mean-square convergence of 1.

Truncating the infinite series (A.1) and (A.2) to q terms, we have \(I_{i j}^{q}\). From the truncated mean-square error in [21], we obtain the mean-square error for truncating (A.1)

$$ \begin{aligned} \mathrm{E}\left\{\left( I_{i j}\left( t_{n}, t_{n}+h\right)-I_{i j}^{q}\left( t_{n}, t_{n}+h\right)\right)^{2}\right\}\leq \frac{3 h^{2}}{2 \pi^{2} q}. \end{aligned} $$

Here we need 3h2/(2π2q) ≤ h3, so we should choose

$$ q_{t} \geq\left\lceil\frac{3}{2 \pi^{2} h}\right\rceil. $$

Truncating the expansion (A.1) to q, we get the mean-square error

$$ \begin{aligned} \mathrm{E}\left\{\left( I_{i j}\left( t_{n}, t_{n}+h\right)-I_{i j}^{q}\left( t_{n}, t_{n}+h\right)\right)^{2}\right\}\leq -\frac{h^{2}}{8} \ln \left|1-\frac{2}{2 q+1}\right|. \end{aligned} $$

Here we need the mean-square error less than h3, so we should choose

$$ q_{p} \geq\left\lceil\left( \frac{2}{1-e^{-8 h}}-1\right) / 2\right\rceil. $$

Since qp ≈ 1/(8h), the truncated indices of A.1 and (A.2) both are O(1/h), and it can be calculated that the convergence speed of (A.1) is about qt/qp ≈ 1.22 times that of (A.2). This means that the approximation based on the multiple Legendre Fourier series is slightly more efficient than that based on the multiple trigonometric Fourier series.

1.2 A.2 Wiktorsson’s algorithm

If I(h) and A(h) are matrices with elements \(I_{i j}\left (t_{n}, t_{n}+h\right )\), Aii = 0 and

$$ A_{i j}(h)=\frac{h}{2\pi} {\sum}_{r=1}^{\infty} \frac{1}{r}\left\{\zeta_{2 r}^{(j)} \zeta_{2 r-1}^{(i)}-\zeta_{2 r-1}^{(j)} \zeta_{2 r}^{(i)}+\sqrt{2}\left( \zeta_{2 r-1}^{(j)} \zeta_{0}^{(i)}-\zeta_{0}^{(j)} \zeta_{2 r-1}^{(i)}\right)\right\},i\neq j $$

respectively, the approximation based on the multiple trigonometric Fourier series can be written in matrix form

$$ \begin{aligned} & \mathbf{I}(h)=\frac{{\varDelta} \mathbf{W}(h) {\varDelta} \mathbf{W}(h)^{\top}-h I_{m}}{2}+\mathbf{A}(h), \\ &\mathbf{A}(h)=\frac{h}{2 \pi} {\sum}_{k=1}^{\infty} \frac{1}{k}\left\{\mathbf{X}_{k}\left( \mathbf{Y}_{k}+\sqrt{2 / h} {\varDelta} \mathbf{W}(h)\right)^{\top}-\left( \mathbf{Y}_{k}+\sqrt{2 / h} {\varDelta} \mathbf{W}(h)\right) \mathbf{X}_{k}^{\top}\right\}, \end{aligned} $$
(A.3)

where \({\varDelta } \mathbf {W}(h) \sim N\left (0, h I_{m}\right ), \mathbf {X}_{k} \sim N\left (0_{m}, I_{m}\right )\) and \(\mathbf {Y}_{k} \sim N\left (0_{m}, I_{m}\right ), k=\)1, 2,…,q are all independent. As the Lévy stochastic area has the relationship IijIji = 2Aij, we only need to simulate Iij for i < j or i > j in the simulation.

Wiktorsson’s algorithm is based on approximation of the tail-sum distribution of (A.3)

$$\varepsilon_{q}=\frac{h}{2 \pi} {\sum}_{k=q+1}^{\infty} \frac{1}{k}\left\{\mathbf{X}_{k}\left( \mathbf{Y}_{k}+\sqrt{2 / h} {\varDelta} \mathbf{W}(h)\right)^{\top}-\left( \mathbf{Y}_{k}+\sqrt{2 / h} {\varDelta} \mathbf{W}(h)\right) \mathbf{X}_{k}^{\top}\right\}, $$

which improves the rate of convergence. Let vec \(\left (\mathbf {I}(h)^{T}\right )\) be column vectors of (A.3), and the following is the procedure of Wiktorsson’s algorithm [22]:

  1. 1.

    First simulate \({\varDelta } \mathbf {W}(h) \sim N\left (0_{m}, \sqrt {h} I_{m}\right )\).

  2. 2.

    Simulate the truncated first q terms

    $$ \tilde{A}^{(q)}(h)=\frac{h}{2 \pi} {\sum}_{k=1}^{q} \frac{1}{k} K_{m}\left( P_{m}-I_{m^{2}}\right)\left\{\left( \mathbf{Y}_{k}+\sqrt{\frac{2}{h}} {\varDelta} \mathbf{W}(h)\right) \otimes \mathbf{X}_{k}\right\} $$

    where \(\mathbf {X}_{k} \sim N\left (0_{m}, I_{m}\right )\) and \(\mathbf {Y}_{k} \sim N\left (0_{m}, I_{m}\right )\)

  3. 3.

    Then simulate \(\mathbf {G}_{q} \sim N\left (0_{M}, I_{M}\right )\) and add the approximation of tail-sum distribution:

    $$ \widetilde{A}^{(q)^{\prime}}(h)=\widetilde{A}^{(q)}(h)+\frac{h}{2 \pi} a_{q}^{1 / 2} \sqrt{{\Sigma}_{\infty}} \mathbf{G}_{q} $$

    where \(a_{q}={\sum }_{k=q+1}^{\infty } 1 / k^{2}\)

  4. 4.

    Finally obtain the approximation vec \(\left (\mathbf {I}(h)^{T}\right )^{(q)^{\prime }}\) of vec \(\left (\mathbf {I}(h)^{T}\right )\)

    $$ \operatorname{vec}\left( \mathbf{I}(h)^{T}\right)^{(q)^{\prime}}=\frac{{\varDelta} \mathbf{W}(h) \otimes {\varDelta} \mathbf{W}(h)-\operatorname{vec}\left( h I_{m^{2}}\right)}{2}+\left( I_{m^{2}}-P_{m}\right) {K_{m}^{T}} \widetilde{A}^{(q)^{\prime}}(h) $$

    Here Pm is the m2 × m2 permutation matrix and for the specific expression of matrices Pm please refer to [22].

The mean-square error of Wiktorsson’s algorithm [22] is

$$ \underset{i, j}{\max} E\left\{\left( I_{i j}(h)-I_{i j}^{(q)^{\prime}}(h)\right)^{2}\right\} \leq \frac{5 h^{2}}{24 \pi^{2} q^{2}} m^{2}(m-1). $$

Here we also need the mean-square error less than h3, so we should choose truncated indices as

$$ q_{w} \geq\left\lceil\frac{\sqrt{5 m^{2}(m-1) /\left( 24 \pi^{2}\right)}}{\sqrt{ h}}\right\rceil, $$

and the truncated indices qw is \(O(1/\sqrt {h})\) that is much better than O(1/h).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Burrage, K., Komori, Y. et al. A class of new Magnus-type methods for semi-linear non-commutative Itô stochastic differential equations. Numer Algor 88, 1641–1665 (2021). https://doi.org/10.1007/s11075-021-01089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01089-7

Keywords

Navigation