Abstract
In this paper, the block generalized product-type bi-conjugate gradient (GPBi-CG) method for solving large, sparse nonsymmetric linear systems of equations with multiple right-hand sides is proposed. The new algorithm is based on the block BiCG process. We analyze the convergence behavior of this method and present a bound for the residual norm of block GPBi-CG according to the residual norm of Bl-GMRES method. In addition, we prove that convergence is guaranteed when A is positive real. The numerical experiments show the efficiency of the new method and confirm the theoretical results.

Similar content being viewed by others
References
Addam, M., Heyouni, M., Sadok, H.: The block Hessenberg process for matrix equations. ElectronTrans. Numer. Anal. 46, 460–473 (2017)
Amini, S. , Toutounian, F., Gachpazan, M.: The block CMRH method for solving nonsymmetric linear systems with multiple right-hand sides. J. Comput. Appl. Math. 337, 166–174 (2018)
Calvetti, D., Golub, G.H., Reichel, L.: Adaptive Chebyshev iterative methods for nonsymetric linear systems based on modified moments. Numer. Math. 67, 21–40 (1994)
Davis, T., Hu, Y.: The university of Florida sparse matrix collection. ACM Trans. Math. Softw. 38, 1–25 (2011). Avaiable online at http://www.cise.ufl.edu/research/sparse/matrices/list$($_$)by$($_$)id.html
Freund, R. W., Malhotra, M.: A Block-QMR algorithm for non-hermitian linear systems with multiple right-hand sides. Linear Algeb. Appl. 254, 119–157 (1997)
Frommer, A., Lund, K., Szyld, D. B.: Block Krylov subspace methods for functions of matrices. Electron. Transact. Numer. Anal. 47, 100–126 (2017). https://doi.org/10.1553/etna-vol47s100
Frommer, A., Lund, K., Szyld, D.B.: Block Krylov subspace methods for functions of matrices II: Modified block FOM, tech. report, MATHICSE cublens. https://doi.org/10.5075/ep-MATHICSE-265508 (2019)
El Guennouni, A., Jbilou, K., Sadok, H.: The block Lanczos method for linear systems with multiple right-hand sides. J. App. Numer. Math. 51, 243–256 (2004)
El Guennouni, A., Jbilou, K., Sadok, H.: A block version of BiCGSTAB for linear systems with multiple right-hand sides. Electron. Trans. Numer. Anal. 16, 129–142 (2003)
Jbilou, K., Messaoudi, A., Sadok, H.: Global FOM GMRES algorithms for matrix equations. Appl. Numer. Math. 31, 49–63 (1999)
Karimi, S., Toutounian, F.: The block least squares method for solving nonsymmetric linear systems with multiple right-hand sides. Appl. Math. Comput. 177, 852–862 (2006)
Koulaei, M. H., Toutounian, F.: On computing of block ILU preconditioner for block tridiagonal systems. J. Comput. Appl. Math. 202, 248–257 (2007)
Kub\(\acute {\mathrm {i}}\textit {nov}\acute {\mathrm {a}}\), M., Soodhalter, K.M.: Admissible and attainable convergence behavior of block Arnoldi and GMRES. Siam J. Matrix Anal. Appl. 41, 464–486 (2019)
Nikishin, A., Yeremin, A.: Variable block cg algorithms for solving large sparse symmetric positive definite linear systems on parallel computers, I: General iterative scheme. SIAM J. Matrix Anal. Appl. 16, 1135–1153 (1995)
OLeary, D.: The block conjugate gradient algorithm and related methods. Linear Algeb. Appl. 29, 293–332 (1980)
Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)
Simoncini, V.: A stabilized QMR version of block BiCG. SIAM J. Matrix Anal. Appl. 18, 419–434 (1997)
Simoncini, V., Gallopoulos, E.: Convergence properties of block GMRES and matrix polynomials. Linear Algeb. Appl. 247, 97–119 (1996)
Sonneveld, P.: CGS, A fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 10, 36–52 (1989)
Stiefel, E.L.: Kernel polynomial in linear algebra and their numerical applications. In: Further contributions to the determination of eigenvalues, vol. 49, pp 1–22 (1958)
Tong, C. H., Ye, Q.: Analysis Of the finite precision bi-Conjugate gradient algorithm for nonsymmetric linear systems. Math. Comput. 69, 1559–1575 (1999)
Toutounian, F., Mojarrab, M.: The block LSMR method: A novel efficient algorithm for solving non-symmetric linear systems with multiple right-hand sides. Iran J. Sci. Technol. 39, 69–78 (2015)
Van der Vorst, H.A.: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 13, 631–644 (1992)
Zhang, S.-L.: GPBi-CG: generalized product-type methods based on Bi-CG for solving nonsymmetric linear systems. SIAM J. Sci. Comput. 18, 537–551 (1997)
Acknowledgements
We would like to thank the referees for their valuable remarks and helpful suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Taherian, A., Toutounian, F. Block GPBi-CG method for solving nonsymmetric linear systems with multiple right-hand sides and its convergence analysis. Numer Algor 88, 1831–1850 (2021). https://doi.org/10.1007/s11075-021-01097-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-021-01097-7
Keywords
- Multiple right-hand sides
- Block Krylov subspace
- Block BiCG
- Block GPBi-CG
- Convergence analysis
- Block GMRES