Abstract
This paper is concerned with the approximation of matrix functionals of the form wTf(A)v, where \(A\in \mathbb {R}^{n\times n}\) is a large nonsymmetric matrix, \(\boldsymbol {w},\boldsymbol {v}\in \mathbb {R}^{n}\), and f is a function such that f(A) is well defined. We derive Gauss–Laurent quadrature rules for the approximation of these functionals, and also develop associated anti-Gauss–Laurent quadrature rules that allow us to estimate the quadrature error of the Gauss–Laurent rule. Computed examples illustrate the performance of the quadrature rules described.

Similar content being viewed by others
References
Alqahtani, H., Reichel, L.: Simplified anti-Gauss quadrature rules with applications in linear algebra. Numer. Algorithms 77, 577–602 (2018)
Alqahtani, H., Reichel, L.: Generalized block anti-Gauss quadrature rules. Numer. Math. 143, 605–648 (2019)
Barkouki, H., Bentbib, A. H., Jbilou, K.: A matrix rational Lanczos method for model reduction in large-scale first- and second-order dynamical systems. Numer. Linear Algebra Appl. 24, Art.e2077 (2017)
Bentbib, A. H., El Ghomari, M., Jagels, C., Jbilou, K., Reichel, L.: The extended global Lanczos method for matrix function approximation. Electron. Trans. Numer. Anal. 50, 144–163 (2018)
Calvetti, D., Reichel, L., Sgallari, F.: Application of anti-Gauss quadrature rules in linear algebra. In: Gautschi, W., Golub, G.H., Opfer, G. (eds.) Applications and Computation of Orthogonal Polynomials, pp 41–56. Birkhäuser, Basel (1999)
Deckers, K., Bultheel, A.: The existence and construction of rational Gauss-type quadrature rules. Appl. Math. Comput. 218, 10299–10320 (2012)
Fenu, C., Martin, D., Reichel, L., Rodriguez, G.: Block Gauss and anti-Gauss quadrature with application to networks. SIAM J. Matrix Anal. Appl. 34, 1655–1684 (2013)
Gallivan, K., Grimme, E., Van Dooren, P.: A rational Lanczos algorithm for model reduction. Numer. Algorithms 12, 33–66 (1996)
Gautschi, W., Polynomials, Orthogonal: Computation and approximation, Oxford University Press Oxford (2004)
Golub, G. H., Meurant, G.: Matrices, moments and quadrature with applications. Princeton University Press, Princeton (2010)
Gonchar, A. A., López Lagomasino, G.: On Markov’s theorem for multipoint Padé approximants. Math. USSR Sb. 34, 449–459 (1978)
Heyouni, M., Jbilou, K.: An extended block Arnoldi algorithm for large-scale solutions of the continuous-time algebraic Riccati equation. Electron. Trans. Numer. Anal. 33, 53–62 (2009)
Jagels, C., Jbilou, K., Reichel, L.: The extended global Lanczos method, Gauss–Radau quadrature, and matrix function approximation. J. Comput. Appl. Math. 381, Art.113027 (2021)
Jagels, C., Mach, T., Reichel, L., Vandebril, R.: Convergence rates for inverse-free rational approximation of matrix functions. Linear Algebra Appl. 510, 291–310 (2016)
Jagels, C., Reichel, L.: Recursion relations for the extended Krylov subspace method. Linear Algebra Appl. 434, 1716–1732 (2011)
Jagels, C., Reichel, L.: The structure of matrices in rational Gauss quadrature. Math. Comp. 82, 2035–2060 (2013)
Knizhnerman, L., Simoncini, V.: A new investigation of the extended Krylov subspace method for matrix function evaluations. Numer. Linear Algebra Appl. 17, 615–638 (2010)
Laurie, D. P.: Anti-Gaussian quadrature formulas. Math. Comp. 65, 739–747 (1996)
Mach, T., Pranić, M. S., Vandebril, R.: Computing approximate extended Krylov subspaces without explicit inversion. Electron. Trans. Numer. Anal. 40, 414–435 (2013)
Mach, T., Pranić, M. S., Vandebril, R.: Computing approximate (block) rational Krylov subspaces without explicit inversion with extensions to symmetric matrices. Electron. Trans. Numer. Anal. 43, 100–124 (2014)
Moret, I., Novati, P.: RD-rational approximations of the matrix exponential. BIT Numer. Math. 44, 595–615 (2004)
Pozza, S., Pranić, M. S., Strakoš, Z.: Gauss quadrature for quasi-definite linear functionals. IMA J. Numer. Anal. 37, 1468–1495 (2017)
Pozza, S., Pranić, M. S., Strakoš, Z.: The Lanczos algorithm and computing complex Gauss quadrature. Electron. Trans. Numer. Anal. 50, 1–18 (2018)
Pranić, M. S., Reichel, L.: Rational Gauss quadrature. SIAM J. Numer. Anal. 52, 832–851 (2014)
Pranić, M. S., Reichel, L.: Generalized anti-Gauss quadrature rules. J. Comput. Appl. Math. 284, 235–243 (2015)
Pranić, M., Reichel, L., Rodriguez, G., Wang, Z., Yu, X.: A rational Arnoldi process with applications. Numer. Linear Algebra Appl. 23, 1007–1022 (2016)
Schweitzer, M.: A two-sided short-recurrence extended Krylov subspace method for nonsymmetric matrices and its relation to rational moment matching. Numer. Algorithms 76, 1–31 (2016)
Van Buggenhout, N., Van Barel, M., Vandebril, R.: Biorthogonal rational Krylov subspace methods. Electron. Trans. Numer. Anal. 51, 451–468 (2019)
Acknowledgements
The authors would like to thank a referee for carefully reading the manuscript and for comments that lead an improved presentation. This work was begun while L.R. visited the University of Banja Luka. He would like to thank M.P. for making this visit possible and enjoyable.
Funding
H.A. was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant no. G-111-665-1441. L.R. was supported by NSF grant DMS-1729509.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Alahmadi, J., Alqahtani, H., Pranić, M.S. et al. Gauss–Laurent-type quadrature rules for the approximation of functionals of a nonsymmetric matrix. Numer Algor 88, 1937–1964 (2021). https://doi.org/10.1007/s11075-021-01101-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-021-01101-0